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Saliency detection via textural contrast
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We present a new approach for visual saliency detection from various natural images. It is inspired by our careful
observation that the human visual system (HVS) responds sensitively and quickly to high textural contrast, derived
from the discriminative directional pattern from its surroundings as well as the noticeable luminance difference, for
understanding a given scene. By formulating such textural contrast within a multiscale framework, we construct a
more reliable saliency map even without color information when compared to most previous approaches still suf-
fering from the complex and cluttered background. The proposed method has been extensively tested on a wide
range of natural images, and experimental results show that the proposed scheme is effective in detecting visual

saliency compared to various state-of-the-art methods.
OCIS codes: 100.2960, 100.5010, 100.2000.

The human visual system (HVS) has an outstanding abil-
ity to quickly sample the most relevant regions in a given
scene without any prior knowledge. Computational mod-
eling of this system enables various applications, e.g.,
image retargeting, object detection, and recognition, re-
quiring only limited processing resources. For this rea-
son, considerable effort has been devoted to detecting
salient regions, which attract the visual attention indeed,
over the last few years. The basic idea of earlier work for
this task is to employ high-level information (e.g., faces
and pedestrians) as a useful indicator (i.e., top-down ap-
proach); however, it is hardly generalized, as the use of
high-level information is not available in every image. To
cope with this problem, various bottom-up approaches
have been introduced, mostly based on simple low level
features such as luminance, color, and orientation, fol-
lowed by some center-surround operations [1-7]. This is
because the local image features become stimuli of inter-
est when they are distinguishable from their surround-
ings (discriminant center-surround hypothesis) [8]. On
the other hand, some researchers attempt to detect irre-
gularities as visual saliency by exploiting the frequency
domain in a global view [9,10]. Even though remarkable
improvements have been achieved, traditional bottom-up
approaches still often fail to suppress irrelevant regions
(e.g., cluttered and highly textured background) in com-
plex scenes.

In this Letter, we propose a novel biologically inspired
model for detecting salient regions from various natural
images. In particular, we introduce a new stimulus of in-
terest, highly correlated with human visual perception,
i.e., textural contrast obtained from combining the differ-
ence of luminance and directional consistency between
center and surrounding regions. By incorporating the
proposed textural contrast into a multiscale framework,
we can build more reliable saliency maps compared to
traditional bottom-up models. One important advantage
of the proposed method is that it greatly removes un-
wanted fine details while highlighting salient regions
quite uniformly due to its ability to provide the contextual
information regarding underlying image structures.

Specifically, motivated by the simple formulation of
color contrast introduced in [4], we define our luminance
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contrast by allowing for the improved dynamic ranges
with the nth order statistics, given as follows:
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where I, denotes the mean of luminance values over the
whole image (i.e., the largest surrounding region). B; and
N represent the neighbor region (5 x 5 pixels in our imple-
mentation) centered at the ith pixel position and its size,
respectively. An example of the luminance contrast map
generated by Eq. (1) is shown in Fig. 1. It is carefully ob-
served that the second-order moment (i.e., C® (%)) yields
the best results by suppressing irrelevant regions while
sufficiently emphasizing the salient region, i.e., a child
[see Fig. 1(d)]. Furthermore, our luminance contrast map
provides more reasonable response for visual saliency
compared to the frequency-tuned saliency model [4], as
shown in Fig. 1(b) even without color information.

With the luminance contrast, we also aim to depict the
local structure of a given image based on the difference of
directional consistency between center and surrounding
regions. This center-surround directional pattern is invar-
iant to simple optical variations, and it can thus provide a
good approximation to the underlying image structure,
which is indeed correlated with visual saliency. To do this,
we allow for the structure tensor, which summarizes the
dominant orientation and the energy along this direction
based on the local gradient field, defined as follows:
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Fig. 1.
frequency-tuned model [4], (¢) first-order model, (d) second-
order model, and (e) fourth-order model.

(Color online) (a) Original image, (b) color contrast by
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where I, and I,, denote the gradient in horizontal and ver-
tical directions, respectively. The usefulness of the struc-
ture tensor defined in Eq. (2) for our task stems from the
fact that the relative discrepancy between two eigenva-
lues (i.e., 1; 2 25 2 0) of T(?) indicates how intensively gra-
dients in the local region are distributed along the
dominant direction (i.e., the degree to which those direc-
tions are consistent). In order to help clear understanding,
we illustrate the distributions of gradients obtained from
selected image patches as shown in Fig. 2. As can be seen,
the gradients belonging to the strong edge region () are
intensively distributed along the dominant direction com-
pared to those of the highly textured region (@) or the flat
region (®). Thus, we define our directional consistency at
each pixel position as follows:

¢ = (A4 - Ap)% 3)

Here, the larger the value ¢ is, the higher the directional
consistency is. Note that the average of gradients does not
guarantee the reliable measure, because aligned but oppo-
sitely oriented gradients would cancel out in this average.
In what follows, the center-surround directional pattern
can be formulated by using the difference of directional
consistency defined in Eq. (3) between center and sur-
rounding regions as follows:

D@@) = ) |pG) - p(D)|. @
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where W, is a set of neighboring pixels centered at the ith
pixel position. Note that the size of W, is set to 7 x 7 pixels
in our implementation. An example of the center-
surround directional pattern map is shown in Fig. 2.

Since salient regions are assumed to contain both high
luminance contrast and discriminative directional pat-
terns as mentioned, the proposed saliency map is thus
computed by combining such two outputs (i.e., textural
contrast) as follows:
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Fig. 2. (Color online) Gradients obtained from selected image
patches are illustrated. Note that 1; and 4, represent the energy
along the dominant orientation of the gradient field and its
perpendicular direction, respectively.
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S(@) = C® (@) x D(@), (5)

where C®(7) and D(¢) denote the response from contrast
of the luminance (generated by the second-order model)
and the directional consistency at the ith pixel position,
defined in Eqgs. (1) and (4), respectively. Note that each
response is smoothed by Gaussian filtering as in [9] and
S(7) is normalized to [0,255] for gray-scale representa-
tion. It is worth noting that the combination strategy de-
fined in Eq. (5) provides the robust saliency map while
effectively suppressing false positives in the background.
This is because only one of two responses may be high in
the background.

Since the size of the salient object is not given, visual
saliency is usually computed at multiple scales. To do
this, let R = {r{,7s,---,7)} denote the set of scales to
be considered for saliency map generation at different
scales. Note that the saliency map obtained from each
scale is rescaled to the size of input image (i.e., finest
scale). Then, the scale-invariant saliency map is finally
computed by the linear combination of outputs obtained
from each scale with the same weight as follows:
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where S, denotes the saliency map computed by using
the scale factor r, which is subsequently rescaled to
the size of the original image by using the nearest neigh-
bor interpolation. In our implementation, we use four
scale factors: R = {1.0,0.7,0.4,0.2}. The scale-invariant
saliency map is shown in Fig. 3. By combining outputs
from each scale, we can highlight the whole region of
salient objects accurately regardless of their sizes.

In this Letter, our experiments were conducted on a
total of 725 images randomly collected from Microsoft
Research Asia [11] and Pattern Analysis, Statistical Mod-
eling and Computational Learning Visual Object Classes
[12] databases. To show the superiority of the proposed
method, we compared ours (we refer to it as TC)
with various state-of-the-art methods, which are saliency
tool box (STB) [1], local contrast (LC) [2], spectral
residual (SR) [9], graph-based visual saliency (GB) [3],
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Fig. 3. (Color online) Scale-invariant saliency map. Note that
the saliency map computed at each scale is resized to the size of
the original image.
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Fig. 4. (Color online) Some examples of visual saliency detection. (a) Original image, (b) ground truth, (c) saliency tool box (STB)
[1], (d) local contrast method (LC) [2], (e) spectral residual (SR) [9], (f) graph-based visual saliency (GB) [3], (g) frequency-tuned
method (FT) [4], (h) context-aware visual saliency (CA) [5], (i) spatial-frequency distribution (SFD), (j) difference of ordinal

signatures (DOS) [7], (k) Proposed method (TC).
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Fig. 5. (Color online) ROC curve for the quantitative analysis.

frequency-tuned (FT) [4], context-aware visual saliency
(CA) [5], spatial-frequency distribution (SFD) [6], and dif-
ference of ordinal signatures (DOS) [7]. Some results of
saliency detection are shown in Fig. 4. For the quantita-
tive evaluation, we also plot the receiver operating char-
acteristic (ROC) curve based on recall and precision as
shown in Fig. 5. Note that the ground truth images are

Table 1. Performance Comparison of the Processing

Time (Most Images Have Resolution
400 x 300 on Our Database)

Method SR GB FT CA DOS TC
Speed (sec) 0.02 093 0.03 26.88 0.06 0.58

manually generated. As shown in these figures, the best
performance is achieved with the proposed method. Note
that the proposed method is evaluated with various block
sizes for computing the structure tensor. We also demon-
strate the average processing time taken by some com-
petitive methods (i.e., SR, GB, FT, CA, DOS, and TC)
in Table 1. Note that algorithms were tested using a
Core2Duo 3.0 GHz machine with C implementation.

In conclusion, we have presented a novel method for
saliency detection from various natural images.
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