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Direct numerical simulations of fluid flow through a concentric annulus with a rotating inner wall
were performed at ReDh=8900. To elucidate the modifications of the near-wall turbulent structure
induced by rotation of the inner wall, we compared data obtained at rotation rates of N=0.0 and
0.429 for a system with a radius ratio �R*� of 0.5. Conditional quadrant/octant analysis and
probability density functions of the velocity fluctuations revealed distinctive features of the
three-dimensional turbulent boundary layer �3DTBL� in the concentric annulus with a rotating inner
wall. Coherent structures near the inner wall were identified by a �2-based eduction scheme to give
the detailed information on the activated near-wall turbulent structures. The ensemble-averaging of
the educed coherent vortices showed that enhanced ejections near the vortices were primarily
responsible for the augmented turbulent structures. The alteration of the turbulent structures was
attributed to the centrifugal force arising from rotation of the inner wall. The assumption of Littell
and Eaton on the cause of the altered turbulent structures in 3DTBLs was invalid in the present
study. Taken together, the present results showed that the 3DTBL in a rotating concentric annulus
has features different from those observed in other types of 3DTBL due to the transverse
curvature. © 2006 American Institute of Physics. �DOI: 10.1063/1.2391387�

I. INTRODUCTION

A three-dimensional turbulent boundary layer �3DTBL�
is a boundary layer in which the mean flow direction changes
with distance from the wall. Many engineering flows are
three-dimensional in nature; for example, those on swept
wings of aircraft, rotating propeller hubs, rotating disks, in-
side curved ducts, and submarine hulls. Thus, understanding
the behavior of 3DTBLs is of great practical relevance. The
turbulent flow of a fluid moving through a concentric annu-
lus with a rotating inner wall can also be considered as a
3DTBL. Large-eddy simulation �LES� studies of rotating an-
nular flows have shown that the shear stress angle lags be-
hind the strain angle in such flows,1 a feature observed in
many previous studies of 3DTBLs. Therefore, elucidating
the behavior of turbulent rotating flows in concentric annuli
should provide insight into the general problem of 3DTBLs.

In general, 3DTBLs can be classified as either pressure-
or shear-driven flows. Pressure-driven 3DTBLs are boundary
layers that are perturbed by a mean spanwise pressure gradi-
ent. There have been many experimental and numerical stud-
ies on pressure-driven 3DTBLs.2–9 In shear-driven 3DTBLs,
by contrast, a transverse shear is generated by a moving wall.
Turbulent rotating flow in a concentric annulus falls into this
category. Several experimental and numerical investigations
have examined shear-driven 3DTBLs.10–16 In studies of the
longitudinal flow along a spinning cylinder, Lohmann10

found that the transverse velocity boundary layer grows at a
rate approximately proportional to x0.5, where x is the down-

stream distance from the beginning of the moving section,
and that the stress angle lags behind the mean velocity gra-
dient angle. Littell and Eaton11 examined the 3DTBL created
by a free rotating disk. To investigate the characteristics of
the near-wall structures, they measured the conditionally av-
eraged velocities. Their results showed asymmetric patterns
in the conditionally averaged quantities, which they attrib-
uted to the modification of the shear-stress-producing struc-
tures by cross-flow. Specifically, they hypothesized that
cross-flow reduces the ability of the streamwise vortices of
one sign to produce strong ejections, while weakening the
ability of those of the other sign to produce strong sweeps.
However, in a study of a similar rotating disk flow system,
Kang et al.13 concluded that the asymmetries in the condi-
tional averages are caused by non-Reynolds-stress-producing
events rather than modification of the shear-stress-producing
structures by cross-flow. This issue was further examined in
recent LES and direct numerical simulation �DNS�
calculations15,16 of rotating disk flows, which gave results
supporting the conclusions of Littell and Eaton.11 Kannepalli
and Piomelli14 carried out a LES study of a spatially devel-
oping shear-driven 3DTBL generated by moving a section of
the wall in the transverse direction. They observed disruption
of the outer-layer vortical structures in addition to the salient
features of 3DTBLs in previous findings.

A well-known feature of both pressure- and shear-driven
flows is that the shear stress angle �� is usually smaller than
the mean velocity gradient angle �g. This lack of alignment
between the Reynolds stress and the mean shear also exists
in stationary 3DTBLs such as the flow in a rotating concen-
tric annulus considered in the present study. The stress/strain
misalignment cannot be captured by any turbulence model
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that assumes an isotropic eddy viscosity. To overcome this
difficulty, one must understand which terms in the Reynolds-
stress transport equation are responsible for the misalignment
between the stress and strain.

Another consistent trend in 3DTBLs is that throughout
the entire 3DTBL, the structure parameter �a1; defined as the
ratio of the shear stresses to twice the turbulent kinetic en-
ergy� is lower than that of the initial two-dimensional state.
As pointed out by Schwarz and Bradshaw,6 this alteration
implies that the turbulence becomes less efficient in extract-
ing energy from the mean flow after cross-flow has appeared.
Bradshaw and Pontikos2 hypothesized that turbulent eddies
formed in a two-dimensional boundary layer are tilted out of
their preferred orientation by the mean three-dimensionality.
On the other hand, Littell and Eaton11 suggested that the
modification of a1 is due in part to a modification of near-
wall structures rather than being purely a disequilibrium ef-
fect. In support of their theory, they observed strong asym-
metry in the near-wall vortical structures, which leads to a
reduction in turbulent energy near the wall. Despite the many
studies on 3DTBLs, many open questions remain regarding
the changes of a1.

In the present work, we simulated a turbulent rotating
flow in a concentric annulus using DNS in order to elucidate
the effect on the near-wall structure of rotating the inner
wall. The system studied is similar to that examined in a
recent LES study.1 However, that previous study did not con-
sider the detailed flow structures, whereas in the present
study we devote particular attention to the changes in the
near-wall turbulent structure induced by rotation of the inner
wall. A schematic diagram of the computational domain is
shown in Fig. 1. Two rotation rates, N=0.0 and 0.429, were
selected and the radius ratio �R*� was 0.5. The Reynolds
number based on the bulk velocity �Vm� and the hydraulic
diameter �Dh=4�� was 8900. Various conditional averaging
techniques are employed to analyze the near-wall turbulent
structures. Four characteristic flow angles are introduced to
remove the bulk rotation effects. To observe asymmetries in
the turbulent structures, conditional quadrant/octant analysis
for the Reynolds shear stress and probability density func-
tions �pdfs� of the velocity fluctuations are employed. Fi-
nally, coherent structures near the inner wall are identified by
means of the �2 vortex criterion in order to shed further light
on the transverse curvature effects on activated near-wall tur-
bulent structures in rotating concentric annuli.

II. NUMERICAL METHODS

The numerical conditions used in the present work were
similar to those of Chung and Sung,1 except that no model
was employed and finer streamwise and azimuthal grid reso-
lutions were used. Two rotation rates �N=0.0 and 0.429�
were selected to compare the 3DTBL in a rotating annulus
with the two-dimensional flow in the corresponding nonro-
tating annulus. The computational domain was one-quarter
of the full cross section of the concentric annular pipe. The
computational length in the streamwise direction was
Lz=18� in all cases. The adequacy of the above computa-
tional domain was confirmed by calculating two-point corre-
lations of the fluctuating streamwise velocities and tempera-
ture in the streamwise and azimuthal directions for all cases.
The time step was 0.03� /Vm and the total averaging time
was 750� /Vm in all cases. In the wall-normal direction, grid
points were clustered according to a hyperbolic tangent
distribution. The number of grid points in the r, �, and z
directions was 65�256�256, respectively. The mesh reso-
lutions were �z+=10.55 and 11.95, �rmin

+ =0.25 and
0.28, �rmax

+ =12.89 and 14.53, R1��+=1.84 and 2.09, and
R2��+=3.68 and 4.17 for the N=0.0 and 0.429 systems, re-
spectively. Periodic boundary conditions were applied in the
axial and circumferential directions for the velocity compo-
nents, and a no-slip boundary condition was imposed at the
solid walls.

The governing equations were integrated in time using
the fractional step method with the implicit velocity decou-
pling procedure proposed by Kim et al.17 Under this ap-
proach, the terms are first discretized in time using the
Crank-Nicolson method, and then the coupled velocity com-
ponents in the convection terms are decoupled using the im-
plicit velocity decoupling procedure. The decoupled velocity
components are then solved without iteration. Because the
implicit decoupling procedure relieves the Courant-
Friedrichs-Lewy restriction, the computation time is reduced
significantly. In the preliminary calculation for the present
flow configuration, the comparison between the iterative nu-
merical scheme and the present one was made. Usually, three
or four iterations were needed to get a converged solution
with the coupled velocity components. The computational
time of the iterative scheme was 1.6–1.9 times larger than
that of Kim et al.17 The overall accuracy in time is second-
order. All the terms are resolved using a second-order central
difference scheme in space with a staggered mesh. Details
regarding the numerical algorithm can be found in the paper
of Kim et al.17

III. RESULTS AND DISCUSSION

A. Mean flow properties and second-order statistics

Before proceeding further, it is important to first estab-
lish the reliability and accuracy of the present numerical
simulations. Table I lists the mean flow parameters for the
two N values considered here. The average skin friction co-
efficient �Cf =R1 / �R1+R2�Cf ,inner+R2 / �R1+R2�Cf ,outer� based
on the friction velocity �Q�= ���z

2+��
2�0.5 /��0.5� for N=0.0

�see Table I� is similar to that calculated by Chung et al.18

FIG. 1. Schematic diagram of the computational domain.
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Here, Cf ,inner= ��z,inner
2 +��,inner

2 �0.5 / �0.5�Vm
2 � and Cf ,outer

= ��z,outer
2 +��,outer

2 �0.5 / �0.5�Vm
2 �. The Cf value for N=0.429 is

larger than that for N=0.0, while being consistent with the
results of previous experimental and numerical studies.18,19

Comparison of the mean streamwise velocity distribu-
tions calculated in the present study with experimental data19

for N=0.429 �Fig. 2�a�� shows that, except for slight devia-
tions in the center region and near the outer wall, the numeri-
cal and experimental results are in satisfactory agreement.
Here, y1 is the distance from the inner wall. It is interesting
to note that integration of the experimentally determined pro-
files in the radial direction does not yield a value of unity.
The integrated value using the Riemann sums of the experi-
mental data is 1.064. This stands in contrast to the numerical
profiles, which yield values of 1.0 upon integration. After
rescaling of the experimental data by a normalization
process18 to give an integral in the radial direction of unity,
the numerical prediction was in good agreement with the
experimental data. Note that, as pointed out by Nouri and
Whitelaw,19 the profiles become flatter and less skewed with
increasing N. To further compare our numerical results with
previous simulation and experimental findings, Fig. 2�b� de-

picts the calculated mean azimuthal velocities normalized by
the rotational speed of the inner wall along with the corre-
sponding LES data of Chung and Sung1 and experimental
data of Nouri and Whitelaw.19 Compared with the LES re-
sults, the present DNS data are in quantitatively better agree-
ment with the experimental data.

Figure 3 shows the root-mean-square �rms� velocity
fluctuations normalized by the bulk velocity obtained in our
calculations, along with the data of Chung et al.18 and Nouri
and Whitelaw.19 The fluctuating quantities of the experimen-
tal data are also rescaled by the normalization process as
seen in Fig. 2�a�. The calculated fluctuations in the wall-
normal �Fig. 3�b�� and azimuthal �Fig. 3�c�� directions are in
good qualitative agreement with the experimental data. It is
clear from Fig. 3 that the velocity fluctuations increase with
increasing N. Furthermore, the fluctuation levels are asym-
metric, which can be attributed to the destabilizing effect of
the centrifugal forces. The Reynolds shear stresses in the
global coordinates are displayed in Fig. 4. Similar to the
behavior of the rms velocity fluctuations in Fig. 3, the Rey-
nolds shear stresses increase in strength and become skewed
toward the inner wall as N is increased.

B. Flow angle and structure parameter

The differences between the turbulent statistics of a
3DTBL and the corresponding two-dimensional flow can be
attributed to the structural changes induced by a moving wall
or a mean transverse pressure gradient, to the rotation of the
coordinate system aligned with the streamwise vortices, and
to the increased mass flow rate.5 Coordinate rotation effects
can be eliminated by introducing an appropriate flow angle.
There are several characteristic angles, and those used in the
present study are listed below:

TABLE I. Mean flow parameters

N 0.0 0.429

Ta= ��R2−R1� /R1�0.5V�w�R2−R1� /	 �Present� 0.00 1909.05

Re�,inner=Q�,inner� /	 �Present� 150.72 173.47

Re�,outer=Q�,outer� /	 �Present� 142.79 145.60

Cf ,inner �Present� 0.009 18 0.012 16

Cf ,outer �Present� 0.008 24 0.008 56

Cf �Present� 0.008 55 0.009 76

Cf �Ref. 18� N=0.0 0.008 80 ¯

Cf �Ref. 1� N=0.429 ¯ 0.009 86

Cf �Ref. 19� N=0.429 ¯ 0.010 48

FIG. 2. Distributions of mean streamwise velocity and azimuthal velocity.

FIG. 3. Root-mean-square velocity fluctuations.
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�i = 0.5 tan−1 2vz�v��

vz�
2 − v��

2
, �s = tan−1 �V� − V�w�

Vz
,

�1�

�g = tan−1 �V�/�r

�Vz/�r
, �� = tan−1 vr�v��

vr�vz�
,

where �i, �s, �g, and �� are the intensity angle, the mean
velocity angle, the mean velocity gradient angle, and the
Reynolds shear stress angle, respectively. A schematic view
of the transformed coordinate systems aligned with �� and �i

�dashed lines� is shown in Fig. 5. When the coordinates are
rotated with the Reynolds shear stress angle, we have

vr
��v�

��=0. Rotation of the coordinates with the intensity angle

maintains vz
i�v�

i�=0.
The flow angles �i, �s, �g, and �� for N=0.429 are plot-

ted as a function of y+ in Fig. 6. Among the four angles
considered, �s and �i are the best candidates for minimizing
the bulk turning effect on flow structures. Hence, we used the
intensity angle �i for N=0.429 to observe the structural
modifications of the turbulent structures, similar to a previ-
ous study.9 It should be noted that the difference between the
shear stress angle ���� and the mean velocity gradient angle
��g� is quite large, as has been observed in many previous

studies of 3DTBLs.4,6,14,16 Because of this difference, scalar
eddy-viscosity-type turbulence models for the Reynolds-
averaged Navier-Stokes equations are ill suited to simulating
flows of this type. If ��g-��� is less than 10°, the errors asso-
ciated with assuming an isotropic eddy viscosity should be
less than 3%.20 In the present study, however, the difference
between �g and �� reaches values of 27°, indicating that
isotropic modeling is inappropriate for the N=0.429 system.

To evaluate the efficiency of the eddies in producing
turbulent shear stresses for a given amount of turbulence
energy, we consider the structure parameter a1= �vr�vz�

2

+vr�v��
2�0.5 /2k, as shown in Fig. 7. The value of a1 increases

substantially as N is increased throughout the entire near-
wall region. This trend near the wall appears to be due to the
increase of the Reynolds shear stress with increasing N,
rather than to a diminishing of the turbulent kinetic energy.1

However, this behavior is the opposite of that found in nu-
merical simulations of rotating pipes and three-dimensional
TBLs over a flat plate,14,21 suggesting that the instability as-
sociated with the rotation of the inner wall in a concentric
annulus enables more efficient extraction of shear stress from
a given amount of turbulent kinetic energy. It is also inter-
esting to note that a1 is invariant to the intensity angle �i,
which suggests that the increase in a1 can be interpreted as a
structural change of the turbulent structures. To clarify the
increase of the structure parameter on going from N=0.0 to
0.429, we carried out various conditional averaging analyses
for the Reynolds shear stress vr�vz�, which are described in the
following subsection.

FIG. 4. Distributions of Reynolds shear stresses.

FIG. 5. �Color online� Schematic view of the transformed coordinate sys-
tems: �a� for intensity angle and �b� for Reynolds shear stress angle.

FIG. 6. Profiles of flow angles for N=0.429.

FIG. 7. Distributions of the structure parameter a1.
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C. Quadrant/octant analysis and probability
density function

In this subsection, we consider various conditional aver-
aging techniques to observe the rotating effect of the inner
wall on near-wall turbulent structures. Figure 8 schematically
depicts the sign convention for streamwise vortices near the
inner wall. The dynamics associated with these vortices are
different according to the rotation of the inner wall. In the
present study, the sign of a negative vortex is the same as the
mean streamwise vorticity. It is well known that the stream-
wise vortices are the primary contributors to the shear stress
in wall-bounded turbulence. Since we are most interested in
structural changes of turbulent structures, it would be advan-
tageous to study the three-dimensional effects on the shear-
stress-producing events. Quadrant analysis of the Reynolds
shear stress provides detailed information on the contribu-
tions of various events occurring in the flow to the total
turbulence production.22,23 The analysis divides the Reynolds
shear stress into four categories according to the signs of vz�
and vr�. The first quadrant �Q1�, vz�
0 and vr�
0, contains
outward motion of high-speed fluid; the second quadrant
�Q2�, vz��0 and vr�
0, contains outward motion of low-
speed fluid referred to as ejection events; the third quadrant
�Q3�, vz��0 and vr��0, contains inward motion of low-
speed fluid; and the fourth quadrant �Q4�, vz�
0 and vr��0,
contains an in-rush of high-speed fluid referred to as sweep
events. Here, Q1 and Q3 events contribute to the positive
Reynolds shear stress �negative production�, and Q2 and Q4
events contribute to the negative Reynolds shear stress �posi-
tive production�.

Figure 9 illustrates the distributions of the Reynolds
shear stresses about strong ejections and sweeps at y+=10.
Some schematic diagrams of streamwise vortices are added
in Fig. 9 for clarity. The conditions for a strong ejection and
a strong sweep are as follows:

For a strong ejection, −vr�vz�
2vr rms� vz rms� , and vr�

0;

For a strong sweep, −vr�vz�
2 vr rms� , vz rms� , and vr�
�0.

The same criteria are used in Le et al.,9 Littell and
Eaton,11 and Kang et al.13 Here, the frame of reference is
aligned with the Reynolds stress angle ��. The central peak
in each plot, depicting a strong ejection or sweep, is flanked
by two secondary peaks generated by the opposite event.
Kang et al.13 postulated that these peaks are the signature of
the pair of streamwise vortices that generate the strong
Reynolds-stress-producing event. The central peak in each

plot represents the combined effect of both vortices, while
the secondary peaks each correspond to the effect of an in-
dividual vortex. Thus, asymmetries in the Reynolds shear
stress production by vortices can be discerned by observing
the secondary peaks.

In contrast to the symmetric secondary peaks for
N=0.0, the secondary peaks in the plots for the Q2 and Q4
events of the N=0.429 system show significant asymmetries
in � �see Fig. 9�. It is deduced from the secondary peaks in
Fig. 9 that negative �counterclockwise� vortices generate
both stronger ejections and sweeps than positive �clockwise�
vortices. This suggests that the spanwise flow induced by the
rotation of the inner wall augments the negative vortices, but
hinders the positive vortices, as observed by Anderson and
Eaton.3

To see the three-dimensional effect on the symmetry of
quasistreamwise vortical structures, we consider the prob-
ability density function �pdf� of the streamwise vorticity
fluctuations at y+=10 �Fig. 10�. Here, the frame of reference
is aligned with the intensity angle �i for N=0.429. In this
figure, the streamwise vorticity does not exhibit appreciable
asymmetry, suggesting that vortices of each sign are present
in equal numbers in the 3DTBL.9

Octant analysis of the Reynolds shear stress provides
detailed information on the contribution of flow events to the

FIG. 8. Schematic diagram of positive and negative vortices near the inner
wall.

FIG. 9. �Color online� Conditional averages of vr�vz� at y+=10: �a� strong
ejection and �b� strong sweep.

FIG. 10. Pdf of streamwise vorticity at y+=10. Here, the frame of reference
is aligned with the intensity angle �i for N=0.429.
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production �consumption� of turbulent kinetic energy in
three-dimensional turbulent flows.5 In octant analysis, the
Reynolds shear stress is divided into eight categories accord-
ing to the signs of vr�, vz�, and �z�. To explain the three-
dimensionality in the strength of each vortex sign, the distri-
bution of the Reynolds shear stress vr�vz� for each octant is
shown in Fig. 11 for N=0.0 and 0.429. In this figure, lines
marked with a circle correspond to negative values of �z�.
The frame of reference is aligned with the intensity angle �i

for N=0.429. For N=0.0, the flow event of each �z� is almost
symmetric. It should be noted that, in the region of 0.2
�y1 /��0.6, Q4 events with negative �z� predominate over
those with positive �z�, whereas Q2 events with positive �z�
contribute to the Reynolds shear stress to a greater extent
than those with negative �z�. One remarkable feature of the
data in Fig. 11 is that for N=0.429, the Reynolds shear stress
of positive �z� is almost the same as that of negative �z�. This
phenomenon bears a clear resemblance to the result of the
pdf of the streamwise vorticity fluctuations as shown in Fig.
10. Taken together, the octant analysis results indicate that
the Reynolds-stress-producing events are significantly af-
fected by three-dimensionality. Moreover, they show that the
contribution of Q2 events to the Reynolds shear stress is
enhanced for N=0.429. This guarantees that the centrifugal
force induced by the rotation of the inner wall reinforces the
near-wall quasistreamwise vortices.

To better comprehend the modification of the flow struc-
tures by the rotation, we examined the weighted joint pdfs of
the velocity fluctuations �Fig. 12�. Here, the frame of refer-
ence is aligned with the intensity angle �i for N=0.429. The
distribution is weighted by vr�vz�, which reveals how each
velocity component contributes to the Reynolds shear stress
vr�vz�. Comparison of the N=0.0 and N=0.429 distributions
shows that rotation of the inner cylinder increases the
strength of the events in the second �Q2� and fourth �Q4�
quadrants. In the nonrotating flow, symmetry dictates that the

contributions of positive vortices are the same as those of
negative ones. However, Q4 events of negative �z� are stron-
ger than those of positive �z�, whereas Q2 events of positive
�z� contribute to the Reynolds shear stress to a greater extent
than those of negative �z�. This is consistent with the results
of the octant analysis for Reynolds shear stress vr�vz�, shown
in Fig. 11.

Littell and Eaton11 proposed that rotation-induced cross-
flow inhibits strong sweeps from vortices with near-wall
spanwise velocities in the same direction as the cross-flow
�case 1�, but inhibits strong ejections from vortices with
spanwise velocities in the opposite direction �case 2�. In the
present study, “case 1” and “case 2” are negative and posi-
tive vortices, respectively, as shown in Fig. 8. However, the
pdfs obtained in the present study are not consistent with the
behavior described by Littell and Eaton.11 Rather, the asym-
metry of the Reynolds-stress-producing events observed in
the present study is closely related to the mechanisms pro-
posed by Sendstad and Moin to describe the behavior in the
later period of three-dimensionality.5 They proposed four
mechanisms by which spanwise cross-flow affects particle
trajectories in vortical structures. In their work, the 3D flow
in a channel was made by the sudden application of spanwise
pressure gradient to a 2D channel flow. Sendstad and Moin
separated the mechanisms for the initial and later responses
of the 2D flow. The initial period was defined as the time
when the spanwise boundary layer edge is below y2D

+ �20.
Within the initial period, the quasistreamwise vortices are not
affected by the spanwise boundary layer and the flow is still
very similar to a 2D channel flow. After the initial period, the
flow becomes more obviously 3D in the sense that the
streamwise vortices start to turn in the direction of the mean
spanwise pressure gradient. This is called later period. Here
we consider the two mechanisms for the later period of three-
dimensionality �Mechanisms III and IV in Ref. 5�. In Mecha-
nism III, the negative �case 1� vortices are shifted with re-
spect to the wall layer streaks below them, and the negative
vortices pump high- rather than low-speed fluid away from
the wall. In Mechanism IV, the high-speed fluid swept to-
ward the wall by the positive �case 2� vortices is convected

FIG. 11. Reynolds shear stress vr�vz� for each octant normalized by Vm
2 : �a�

N=0.0 and �b� N=0.429.

FIG. 12. Weighted joint pdf of vr� and vz� at y+=10: �a� N=0.0 and �b�
N=0.429.
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away from the vortex in the same direction as the spanwise
cross-flow. Despite the different mechanisms in generating
3D flows, we observed the similar behaviors of the quasis-
treamwise vortices to those in Sendstad and Moin.5

As will be discussed in Sec. III D, visualizations of the
3DTBLs performed in the present study demonstrate that the
asymmetries of the Q2 and Q4 events arise from deforma-
tions of the vortical structures. The alterations of the vortical
structures by the rotation are consistent with those expected
under Mechanisms III and IV of Sendstad and Moin.5 It
should be noted that Sendstad and Moin5 generated the
3DTBL by a mechanism different from that used in the
present study; however, the three-dimensionalities in the
present study could be explained by the mechanisms of the
later period in Sendstad and Moin5 since the flow was suffi-
ciently adjusted to the spanwise mean shear in Sendstad and
Moin.5

D. 3D conditional averaging

Sendstad and Moin5 proposed four key mechanisms by
which the near-wall vortical structures are modified in
3DTBLs. In devising these mechanisms, they assumed that
the near-wall vortices are aligned horizontally in the two-
dimensional �2D� flow, and respond in a 2D manner to the
spanwise shear. Contrary to this assumption, however, a re-
cent study of coherent structures in two dimensional turbu-
lent boundary layers �2DTBLs� indicated that near-wall vor-
tices are generally inclined in the vertical �y -z� plane and
tilted in the horizontal �x -z� plane.24 These findings thus in-
dicate that the formation of near-wall turbulent structures is
inherently three-dimensional even in 2DTBLs. Hence, it is
crucial to investigate 3DTBLs in a 3D manner.

Many experimental studies of turbulent boundary layers
have provided evidence that most turbulence production near
the wall arises from recurring “bursting” processes in the
near-wall region. A number of conditional averaging tech-
niques have been developed to capture these burst events,
with the most popular being the Q2 �Quadrant 2�-Q4 �Quad-

rant 4�22 and variable-interval time-average 25 eduction
schemes. Since these methods are based on the velocity sig-
nal, the educed structure can be severely smeared, making
accurate analysis of the kinematics and dynamics of coherent
structures practically impossible. Clearly, a more appropriate
eduction scheme is required for analyzing the detailed fea-
tures of the underlying vortical structures. To this end, we
adopt the vortex identification method of Jeong and
Hussain.26 They defined a vortex as a connected region of
negative �2, which is the second largest eigenvalue of the
tensor SikSkj +ikkj, where Sij 	�ui,j +uj,i� /2 is the strain
rate and ij 	�ui,j −uj,i� /2 is the rotation tensor. This defini-
tion has been validated for a variety of vortical flows, includ-
ing both DNS data and analytical solutions.24,26 Figure 13
shows the isosurfaces of �2=−0.01 near the inner wall. Red
and blue shading represent positive and negative vortices,
respectively, distinguished by the sign of the axial vorticity.
For N=0.429, the elongated quasistreamwise vortices are
tilted in the direction of the wall shear stress and are more
activated than those of N=0.0.

Before proceeding further, it is important to identify the
preferred location of the vortical structures. To achieve this,
we first examine some statistics associated with �2. The
mean and rms values of �2 are displayed in Fig. 14. In the
region of y+�10, �2 is positive and comparable in magni-
tude to the rms of �2. This indicates that the viscous sublayer
contains no vortices, because �2 is always positive outside
vortex cores. For both N=0 and 0.429, the rms value of �2 is
greatest at y+�20, suggesting the prominence of vortical
structures in the buffer region. Note that the rms value of
�2 at y+�20 for N=0.0 is a little higher than that for
N=0.429 because it is normalized by Q� and 	��2	2 /Q�

4�. In
the region 10�y+�40, �2 is much smaller than the rms of
�2, indicating substantial cancellation of positive and nega-
tive regions of �2 in the buffer region. Thus, the rms of �2 is
better than �2 as an indicator of vortical structures. It is in-
teresting to note that the rms of �2 at the inner wall for
N=0.429 seems quite larger than that for N=0.0 in Fig. 14.
This is due to the relatively large spanwise mean shear at the
inner wall for N=0.429. The near-wall behavior of �2 is not
affected by the rotation of the inner wall.

FIG. 13. �Color online� Isosurface plots of �2=−0.01 near the inner wall.
Red and blue shading represents positive and negative vortices, respectively.

FIG. 14. Profiles of mean and rms of −�2: �a� N=0.0 and �b� N=0.429.
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The cross-correlations of −�2 with the magnitudes of the
fluctuations in the vorticity �i.e., ��z��, ��r��, and ���� � � and
pressure are shown in Fig. 15 for the N=0.0 and 0.429 sys-
tems. Here, the frame of reference is aligned with the inten-
sity angle �i for N=0.429. Near the wall �10�y+�40�, the
cross-correlation between −�2 and ��z�� is higher than that
between −�2 and ��r�� or �����, suggesting that the structures
are aligned almost parallel to the streamwise direction. It is
interesting to note that the cross-correlation between −�2 and
the pressure fluctuation level is as high as that between −�2

and ��z��, indicating that the coherent structures detected by
�2 contain regions of low pressure. This result is consistent
with the definition of �2, which is based on the Hessian of
the pressure. The inverse, however, is not true; i.e., not all
regions of low pressure are included in the �2-based vortex
definition. The joint pdfs between pressure fluctuation and
�z� also support this result.27

Motivated by the statistics of �2 shown in Figs. 14 and
15, we now consider a fully three-dimensional ensemble av-
erage using the �2-based identification. Our eduction scheme
consists of three basic steps. �I� Detect quasistreamwise vor-
tical structures using the �2 definition, where the sign of the
vortex is given by �z� and the reference frame for �z� is
aligned with the intensity angle �i for N=0.429. The choice
of the y position �y+=20� for the detection of vortices is
based on the rms values of �2 which show a peak located at
y+=20 �see Fig. 14�. To capture the individual vortices effec-
tively, the threshold of the streamwise vorticity is set to three
times the rms value of the streamwise vorticity for N=0.0
�i.e., ��z� � 
3�z rms,2D� �. �II� Ensemble average the accepted
structures with the same sign of rotation by aligning the mid-
points of their streamwise lengths. �III� Shift the alignment
point to maximize the cross-correlation between the indi-
vidual structures and the ensemble-averaged field. The cross-
correlations were computed over three-dimensional windows
of 300�100�200 and 400�100�300 wall units in x+, y+,
and z+ for N=0.0 and N=0.429, respectively. Here, x+,
y+=r+ cos �−R1

+ and z+=r+ sin �� denote the spatial coordi-
nates in the streamwise, wall-normal, and spanwise direc-
tions, respectively. The ensemble averages were based on
databases consisting of 28 instantaneous flow fields for both
N. The individual flow fields were separated in time by 30
wall time units �	 /Q�

2�. The fractions of the total examined

area covered by the coherent structures �number of realiza-
tions times the cross-sectional area/total area� were about
15% for both N.

Isosurfaces of �2 for the educed vortices with positive
and negative �z� are illustrated in Figs. 16 and 17, respec-
tively. In the nonrotating case �N=0.0�, the inclination angles
in the vertical plane are about 9° for the positive and nega-
tive vortices, respectively, and both types of vortex exhibit a
tilting angle of about ±6° in the horizontal plane. These
angles are very similar to those reported by Jeong et al.24 for
coherent structures �an inclination angle of about 9° in the
vertical plane and a tilting angle of ±4° in the horizontal
plane�. The inclination and tilting angles are calculated from
the positions of the head and tail of a vortex. We detected the
head and tail of a vortex using an enlarged view. When the
inner wall is rotated �N=0.429�, however, the inclination
angles for positive and negative vortices change to about 8°
and 13°, respectively. The higher inclination angle of the
negative vortex compared to the positive one in the
N=0.429 system is attributed to the centrifugal force induced
by the rotation of the inner wall. Since the negative vortex is
lifted up away from the wall, it can be strengthened by a
vortex stretching mechanism. This phenomenon is closely
linked to the increase in the structure parameter a1 with mov-
ing away from the wall �see Fig. 7�. Rotation of the inner
wall directly affects the upstream ends of the vortices, and
causes the tilting angles in the negative z direction to in-

FIG. 15. Cross-correlation of −�2 with ��z��, ��r��, �����, and pressure fluctua-
tions: �a� N=0.0 and �b� N=0.429.

FIG. 16. �Color online� Isosurface plots of the ensemble-averaged positive
vortices: �a� N=0.0 and �b� N=0.429.
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crease. The tilting angles for N=0.429 are about −20° for the
positive vortex and −8° for the negative vortex. Note that the
educed vortices have streamwise extents of 200 wall units
and diameters of 25 wall units for all cases, consistent with
the dimensions reported in a previous study.24

To further explore the 3D effects on the coherent struc-
tures, we examined contour plots of the Reynolds shear
stresses and vector plots near the ensemble-averaged vortices
at three x+ positions �Figs. 18–20�. In these figures, thick
�black� and red contours denote the centers of educed
vortices and the Reynolds shear stresses, respectively. At
x+=0.0 �Fig. 18�, the ejection motion near the vortices occurs
at a higher position than the sweep motion, as indicated by a
previous study.24 It is notable that the enhanced ejections for
N=0.429 �Figs. 18�c� and 18�d�� are apparent near the vorti-
ces at x+=0.0. This is due to the upward motion induced by
the centrifugal force, as mentioned above. In addition, the
Q4 event near the positive vortex is weaker than that near the
negative vortex, consistent with the results of the octant
analysis for the Reynolds shear stress vr�vz�. The high-speed
fluid swept toward the wall by the positive vortex is partially
convected away from the vortex in the same direction as the
spanwise cross-flow, as discussed in Sec. III C �Mechanism
IV of Sendstad and Moin5�. This deformation of vortical mo-
tion is more apparent at x+=70.0 �Fig. 19�c��. At the up-
stream end of the negative vortex for N=0.429 �Fig. 20�d��,
the negative vortex is shifted with respect to the wall layer

streaks below it. The negative vortex pumps high- rather than
low-speed fluid away from the wall �Mechanism III of Send-
stad and Moin5�. Thus, the educed vortices confirm that the
Q4 event of the negative vortex is stronger than that of the
positive one, while the Q2 event of the negative vortex is
weaker than that of the positive one, as shown in the joint
pdf analysis of the velocity fluctuations.

Another notable feature clearly revealed in the visualiza-
tion study of the coherent vortices is that the negative vortex
is lifted by the rotation of the wall �Fig. 19�d��. This implies
that the wall rotation reinforces the negative vortex through a
vortex stretching mechanism. It can also be deduced that the
lifted vortex is less affected by viscous dissipation than the
other vortices. Figure 21 shows schematic three-dimensional
views of vortices for rotating cases. The centrifugal force by
the rotating inner wall is exerted mainly on the upper right

FIG. 17. �Color online� Isosurface plots of the ensemble-averaged negative
vortices: �a� N=0.0 and �b� N=0.429.

FIG. 18. �Color online� Contours of Reynolds shear stress and vector plots
near coherent vortices in the r -� plane at x+=0.0: �a� and �b� N=0.0; �c� and
�d� N=0.429. In Figs. 18–20, thick �black� and red contours denote the
centers of educed vortices and the Reynolds shear stresses, respectively.

FIG. 19. �Color online� Contours of Reynolds shear stress and vector plots
near coherent vortices in the r -� plane at x+=70.0: �a� and �b� N=0.0; �c�
and �d� N=0.429.
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side of the positive vortex �see the front view of positive
vortex�. Thus, the rotation enhances the Q2 event near the
positive vortex. The negative vortex is lifted and exposed to
the high speed region of the fluid by the rotation. Therefore,
the negative vortex can be stretched and the strong Q2 and
Q4 events can be observed near the negative vortex. Littell
and Eaton11 assumed that the three-dimensionality in the
Reynolds-stress-producing events is connected to the reduc-
tion of the Reynolds shear stress vr�vz�. Figures 19�c� and
19�d� show that the cross-flow hinders strong sweeps from
the negative vortex, while preventing strong ejections from
the positive one. However, our observation that the vortical
structures in 3DTBLs are more activated than those in
2DTBLs cannot be explained by the mechanism proposed by
Littell and Eaton.11 Our results clearly show that the features
of a 3DTBL depend on the flow configuration, especially the
transverse curvature. Further in-depth investigations are
therefore needed to clarify the dependence of the turbulent
structure on the curvature.

IV. SUMMARY AND CONCLUSIONS

Direct numerical simulations of fluid flow through a con-
centric annulus with a rotating inner wall were performed at
ReDh=8900. To elucidate the modifications of the near-wall
turbulent structure induced by rotation of the inner wall, we
compared data obtained at rotation rates of N=0.0 and 0.429
for a system with a radius ratio �R*� of 0.5. We found that
among the four characteristic flow angles, the mean velocity
angle �s and the intensity angle �i were the best candidates
for minimizing the bulk turning effect on flow structures.
Comparison of the values of the structure parameter a1 for
the systems with and without inner wall rotation indicated
that the production of turbulent shear stress for a given
amount of turbulent kinetic energy is more efficient in the
3DTBL of the concentric annulus with a rotating inner cyl-
inder. Conditional quadrant/octant analysis and the pdfs of
the velocity fluctuations revealed distinctive features of the
3DTBL. In particular, it was apparent that the Reynolds-
stress-producing events are significantly affected by three-
dimensionality. The present results were consistent with the
two mechanisms in the later period of three-dimensionality
proposed by Sendstad and Moin.5 Finally, coherent structures
near the inner wall were detected by −�2 vortex identification
to give the detailed information on the activated near-wall
turbulent structures. The ensemble-averaging of the educed
coherent vortices revealed that enhanced ejections near the
vortices are primarily responsible for the augmented turbu-
lent structures. The alteration of the turbulent structures was
attributed to the centrifugal force arising from rotation of the
inner wall. The assumption of Littell and Eaton11 on the
cause of the altered turbulent structures in 3DTBLs was in-
valid in the present study. Taken together, the present results
showed that the 3DTBL in a rotating concentric annulus has
features different from those observed in other types of
3DTBL due to the transverse curvature.
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