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Abstract. We consider the singularly perturbed nonlinear elliptic problem

ε2∆v − V (x)v + f(v) = 0, v > 0, lim
|x|→∞

v(x) = 0.

Under almost optimal conditions for the potential V and the nonlinearity f ,

we establish the existence of single-peak solutions whose peak points converge
to local minimum points of V as ε → 0. Moreover, we exhibit a threshold on

the condition of V at infinity between existence and nonexistence of solutions.

1. Introduction. In this paper, we study standing wave solutions for the nonlinear
Schrödinger equation

i~
∂ψ

∂t
+

~2

2
∆ψ − V (x)ψ + f(ψ) = 0, (t, x) ∈ R×RN , (1.1)

where ~ denotes the Plank constant and i is the imaginary unit. We always assume
that V and f are continuous.

A solution of the form ψ(x, t) = exp(−iEt/~)v(x) is called a standing wave. We
assume that f satisfies f(exp(iθ)v) = exp(iθ)f(v) for θ, v ∈ R; then f(ψ) = g(|ψ|)ψ
for some real valued function g. Then, the function ψ(x, t) is a standing wave
solution of (1.1) if and only if v satisfies the equation

~2

2
∆v − (V (x)− E)v + f(v) = 0 in RN .

We are interested in positive solutions of (1.1) decaying to 0 at infinity for small
~ > 0. For small ~ > 0, these standing waves are referred as semi-classical states.
For convenience sake, we write V for V − E and consider the following equation

ε2∆v − V (x)v + f(v) = 0, v > 0 in RN , lim
|x|→∞

v(x) = 0 (1.2)
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when ε > 0 is sufficiently small. Defining u(x) = v(εx) and Vε(x) = V (εx), we see
that equation (1.2) is equivalent to

∆u− Vεu+ f(u) = 0, u > 0 in RN , lim
|x|→∞

u(x) = 0. (1.3)

Note that for each x0 ∈ RN and R > 0, Vε converges uniformly to V (x0) on
B(x0/ε,R) as ε → 0. Thus, for a = V (x0) > 0, we have the following limiting
equation

∆u− au+ f(u) = 0, u > 0 in RN , lim
|x|→∞

u(x) = 0. (1.4)

A natural question is whether there exists a solution of (1.3) close to a solution of
(1.4) for small ε > 0. In fact, when infx∈RN V (x) > 0, N = 1 and f(u) = u3,
Floer and Weinstein in [19] constructed a solution close to U(· − x0

ε ) provided
that potential V has a non-degenerate critical point x0 and U is a unique radially
symmetric solution of (1.4) with a = V (x0). Later, Oh in [33] obtained the same
result in higher dimension for f(u) = |u|p−1u with 1 < p < N+2

N−2 . On the other

hand, it was shown by Wang [35] that if there exists a solution uε of (1.3) close to
U(· − x0

ε ), the point x0 should be a critical point of V ∈ C1(RN ).
The arguments in [19, 33] are based on the Lyapunov-Schmidt reduction which

requires a linearized non-degeneracy of a solution of (1.4). The linearized nonde-
generacy of a solution u means that if ∆φ − aφ + f ′(u)φ = 0 and φ ∈ H1,2(RN ),

then φ =
∑N
i=1 ai

∂u
∂xi

for some a1, · · · , an ∈ R. There have been many further works

using the Lyapunov-Schmidt reduction method; refer to [1, 2, 13, 14, 27, 28] and
references therein.

In general, it is not easy to check the linearized non-degeneracy of a solution
of equation (1.4) for general type of nonlinearity f. Furthermore, the linearizing
process is not possible when f is not smooth, but just continuous. To overcome
the strong restrictions on the nonlinearity in the approach through the Lyapunov-
Schmidt reduction, Rabinowitz initiated a variational approach in [34]. In [34]
he employed the mountain pass argument [6] to prove the existence of a positive
solution of (1.2) for small ε > 0 provided that

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x) > 0.

These solutions concentrate around the global minimum points of V as ε→ 0. The
variational approach has been developed further by del Pino, Felmer, and many
others; refer to [11, 12, 15, 16, 17, 18, 22, 24] and references therein.

On the other hand, Berestycki and Lions in [7] showed the existence of least
energy solutions to limit problem (1.4) with a = m when the nonlinearity f satisfies
the following conditions :

(f1) limt→0+ f(t)/t = 0;
(f2) lim supt→∞ f(t)/tp <∞ for some p ∈ (1, N+2

N−2 ), N ≥ 3;

(f3) There exists T > 0 such that 1
2mT

2 < F (T ), where F (t) =
∫ t

0
f(s) ds.

Pohozaev’s identity (see (2.4) below) says that these conditions are almost necessary
and sufficient conditions for the existence of solutions of (1.4). However, in all
previous mentioned works, even when they adopt a variational method, they assume
stronger conditions on f than (f1), (f2) and (f3). Recently, Byeon and Jeanjean in [9]
could prove the existence of a solution of (1.2) concentrating around local minimum
points of V for small ε > 0 assuming only the conditions (f1), (f2) and (f3) when
infx∈RN V (x) > 0.
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On the other hand, it is easy to see that if infx∈RN V (x) < 0, there exist no
positive solutions of problem (1.2) for small ε > 0. Thus, a very natural question is
whether there still exists a positive solution of problem (1.2) even if infx∈RN V (x) =
0. In fact, Byeon and Wang [12] studied a case infx∈RN V (x) = 0 and

lim inf
|x|→∞

V (x) > 0

while in [3], Ambrosetti, Felli and Malchiodi studied a case

lim inf
|x|→∞

V (x)|x|σ > 0

for some σ ≥ 2. From subsequent works [4], [5], [6], [25] by the Lyapunov-Schmidt re-
duction method, it is known that there exist solutions of (1.2) concentrating around
stable critical points of V for small ε > 0 when V ≥ 0 and lim inf |x|→∞ V (x)|x|2 > 0.
On the other hand, the main result in [26] implies that if lim inf |x|→∞ V (x)|x|σ = 0
for some σ > 2, there exists no solution of (1.2) for p ∈ (1, N/(N − 2)). In a
monograph [4], Ambrosetti and Malchiodi raised a question on optimal condi-
tions of V at infinity for the existence of solutions. Recently, Yin-Zhang [36]
and Moroz-Van Schaftingen [31] answered independently the question for f(t) =
tp, p ∈ (N/(N − 2), (N + 2)/(N − 2)). Their results in [36] and [31] say that for
f(t) = tp, p ∈ ( N

N−2 ,
N+2
N−2 ), N ≥ 3 and small ε > 0, there exists a solution of (1.2)

concentrating around positive local minimum points of V when V ≥ 0. Thus, their
result implies that the nonnegativity condition on V is optimal when f(t) = tp

for p ∈ ( N
N−2 ,

N+2
N−2 ) and N ≥ 3. It is well known from [8], [21] and [32] that if

p ≤ N/(N − 2) and V has compact support, there exist no positive solutions of
(1.2). Thus the exponent N/(N − 2) is critical when potential V has compact
support.

The main purpose of this paper is to prove the existence of a solution of (1.2)
which concentrates around an isolated set of positive local minima of potential V
under optimal conditions both on the nonlinearity f and on the potential V , and
to find a threshold of the asymptotic behavior of V at infinity between existence
and nonexistence of a solution of (1.2). For the nonlinearity f(t) = tp, we will show
that if

lim sup|x|→∞ V (x)|x|2 = 0 for

{
p ∈ (1,∞), N = 1, 2,

p ∈ (1, N
N−2 ), N ≥ 3,

lim sup|x|→∞ V (x)|x|2 log |x| = 0 for p = N/(N − 2), N ≥ 3,

then (1.2) has no solutions for small ε > 0, while if

lim inf |x|→∞ V (x)|x|2 > 0 for

{
p ∈ (1,∞), N = 1, 2,

p ∈ (1, N
N−2 ), N ≥ 3,

lim inf |x|→∞ V (x)|x|2 log |x| > 0 for p = N/(N − 2), N ≥ 3,

then (1.2) has a solution which concentrates around an isolated set of positive local
minima of potential V for small ε > 0. Thus we see that the case p = N/(N − 2) is
critical and in contrast with the case p 6= N/(N − 2). The existence result will be
established for general nonlinearity f satisfying Berestycki-Lions optimal conditions
(f1), (f2), (f3). We prove the existence of a solution by developing further the
approaches in [9], [31] and [36], and show the nonexistence of solutions by making
use of an averaging argument and the so-called Emden-Fowler transformation.

To state our results precisely, we make the following conditions on V and f .
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(V1) V ∈ C(RN ,R) and infRN V (x) ≥ 0;
(V2) There is a bounded domain O such that

0 < m ≡ min
x∈O

V (x) < min
x∈∂O

V (x);

(V3) lim inf |x|→∞ V (x)|x|2 ≡ 4λ > 0;

(V4) lim inf |x|→∞ V (x)|x|2 log |x| > 0;

(f1-1) limt→0+ f(t)/tµ = 0 for N ≥ 3 and some µ > N
N−2 ;

(f1-2) limt→0+ f(t)/tµ = 0 for some µ > 1;

(f1-3) lim supt→0+ f(t)/t
N
N−2 <∞ for N ≥ 3.

Set M≡ {x ∈ O | V (x) = m}. Without loss of generality, we assume that 0 ∈M.

Theorem 1.1. Let N ≥ 3. We assume that (V1), (V2), (f2) and (f3) hold. In
addition, we assume that one of the sets of conditions (A1) = {(f1-1)}, (A2) =
{(V3), (f1-2)}, (A3) = {(V4), (f1-3)} hold. Then for sufficiently small ε > 0,
(1.2) has a positive solution uε satisfying the following properties:

(i) there exists a maximum point xε of uε such that limε→0 dist(xε,M) = 0, and
wε(x) ≡ uε(ε(x−xε)) converges (up to a subsequence) uniformly to a positive,
least energy solution of (1.4) with a = m;

(ii) if (A1) holds, there exist c, C > 0 such that

uε(x) ≤ C exp(− c
ε

)/|x− xε|N−2;

(iii) if (A2) holds, there exist c, C > 0 such that

uε(x) ≤ C exp(− c
ε

)|x− xε|−ωεχRN\B(xε,1) + C exp(−c |x− xε|
ε

)χB(xε,1),

where ωε ≡
(N−2)+

√
(N−2)2+4λ/ε2

2 and χA(x) = 1 for x ∈ A, χA(x) = 0 for
x /∈ A;

(iv) if (A3) holds, for any α > 0, there exist c, C > 0 such that

uε(x) ≤ C exp(− c
ε

)/|x− xε|N−2
∣∣ log |xε − x|

∣∣α.
Remark 1. To obtain a similar existence result for N = 1, 2, we assume that
(V1), (V2), (V3) and (f1-2) hold, that there exists T > 0 such that if N = 2,
1
2mT

2 < F (T ) and if N = 1, 1
2mt

2 > F (t) for t ∈ (0, T ), 1
2mT

2 = F (T ) and
mT < f(T ). In addition, we assume for N = 2 that for any α > 0, there exists
Cα > 0 such that |f(t)| ≤ Cα exp(αt2) for all t ∈ R+. Then the existence result of
Theorem 1.1 with property (iii) holds. We can prove the existence combining the
arguments of this paper and [10]. We leave the proof to the readers.

For a nonexistence result, we consider the following general exterior problem

∆u−W (x)u+ up ≤ 0, u > 0 , RN \ Ω (1.5)

where Ω is a bounded open set.

Theorem 1.2. Let p > 1 and N ≥ 1. Assume that when p(N − 2) < N,

W (x)|x|2 ≤ 2

p− 1
[

2

p− 1
− (N − 2)] for sufficiently large |x| > 0,

and that when p(N − 2) = N,

W (x)|x|2 log |x| ≤ (N − 2)2

2
for sufficiently large |x| > 0.
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Then, (1.5) has no C2 solutions.

Theorem 1.2 improves the well-known nonexistence results in [8], [21] and [32]
for the Lane-Emden equation

∆u+ up = 0, u > 0 in RN . (1.6)

Namely, if p > 1 and p(N − 2) ≤ N , then (1.6) has no positive supersolutions in
any exterior domain.

An immediate consequence of Theorem 1.2 is the following nonexistence for prob-
lem (1.2).

Theorem 1.3. Let p > 1 and N ≥ 1. Assume that for p(N − 2) < N,

lim
|x|→∞

V (x)|x|2 = 0

and for p(N − 2) = N,

lim
|x|→∞

V (x)|x|2 log |x| = 0

Then, (1.2) has no C2 solutions for any ε > 0.

We remark that in Theorems 1.2 and 1.3 for N = 1, each side condition near
±∞ in the assumptions is sufficient for the nonexistence.

In Section 2, we will prove Theorem 1.1. For the proof, we truncate the nonlinear
function as in [15], [31] and [36]. Here we will take the truncation with relation to
the asymptotic behavior of V near infinity Then we define an energy functional
with a positive forcing term on energy function; by the forcing term, we get a
lower estimate. Then, following the scheme developed in [9], we construct a set

Xε ⊂ H1,2
0 (B(0, b/ε)) of approximate solutions for large b > 0. Then, for large b > 0,

we show that there exists a critical point uε,b ∈ H1,2
0 (B(0, b/ε)) of a modified energy

functional on H1,2
0 (B(0, b/ε)) near the set Xε of approximate solutions. Then, we

find appropriate comparison functions depending on the truncation so that the
solution of the modified equation decays to 0 faster than the comparison function
near infinity. This implies that the critical point is a solution of the original problem
on B(0, b/ε) uniformly for large b > 0. Then, taking b → ∞, we get a required
solution on RN . We need the compact exhaustion of RN by balls since the energy
functional with some appropriately truncated nonlinearity can not belong to C1

when the negative part of nonlinearity f exists.
In Section 3, we will prove Theorem 1.2. For the proof, assuming there exists a C2

solution, by a averaging process, we reduce the problem to an ordinary differential
inequality. Taking the Emden-Fowler transformation, we can get a contradiction
via some elementary arguments.

After we had finished this work, we got to know the existence of related papers
[26] and [30] which studied the nonexistence of positive supersolutions of (1.5) in
exterior domains. In particular, the first result of Theorem 1.2 for N ≥ 2 was
established in Theorem 1.2 of [30]. Our approach is based on simple ODE arguments
quite different from the approaches in [26] and [30].

2. Proof of Theorem 1.1: existence. We shall work with equation (1.3). Let
Hε be the completion of C∞0 (RN ) with respect to the norm

‖u‖ε =
(∫

RN

|∇u|2 + Vεu
2 dx

)1/2
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and ‖u‖ be the standard norm on H1,2(RN ). From now on, for any set B ⊂ RN and
ε, s > 0, we define Bε ≡ {x ∈ RN | εx ∈ B} and Bs ≡ {x ∈ RN | dist(x,B) ≤ s}.
We may assume that 0 ∈ M and B(0, R) ⊂ O for some R > 0, and that for small
δ > 0 and s ∈ [0, 5δ], ∂Os is smooth, infx∈O5δ V (x) = m and dist(M,RN \O) ≥ 5δ.
We can take a smaller neighborhood O of M and a sufficiently small δ > 0 so that

V (x)T 2 < 2
∫ T

0
f(s) ds for any x ∈ O5δ. Since we look for positive solutions, we

may assume that f(t) = 0 for all t ≤ 0. If there exists T0 > T satisfying f(T0) = 0,
we may assume from the maximum principle that f(t) = 0 for t ≥ T0. Then, there
exists C0 > 0 such that

f(t) ≥ −C0t for t ≥ 0. (2.1)

We note that for N ≥ 3, the Hardy inequality says that∫
RN

|∇u|2 dx ≥ (N − 2)2

4

∫
RN

u2

|x|2
dx, u ∈ C∞0 (RN ). (2.2)

Let βε be a continuous function on [R/ε,∞) satisfying βε(|x|) ≥ |x|2. Now, we
define the truncated function gε of f

gε(x, t) ≡ χOεf(t) + (1− χOε) min{ε2/βε(|x|), f(t)/t}t

and Gε(x, t) ≡
∫ t

0
gε(x, s) ds. We define

f+(t) ≡ max{f(t), 0} and f−(t) ≡ max{−f(t), 0}.

Then, we see that

gε(x, t) = χOεf
+(t) + (1− χOε) min{ε2/βε(|x|), f+(t)/t}t− f−(t).

Setting

g+
ε (x, t) ≡ χOεf+(t) + (1− χOε) min{ε2/βε(|x|), f+(t)/t}t,

g−ε (x, t) ≡ f−(t) and G±ε (x, t) ≡
∫ t

0
g±ε (x, s) ds, we have Gε(x, t) = G+

ε (x, t) −
G−ε (x, t).

For u ∈ Hε, we define

Γε(u) =
1

2

∫
RN

|∇u|2 + Vεu
2 dx−

∫
RN

Gε(x, u) dx+
(∫

Oδε\Oε

1

ε
u2 dx− 1

)2

+
.

If V has compact support and f(t) < 0 for some t > 0, Γε could not belong to
C1(Hε). In order to circumvent this situation, for large b > R with O ⊂ B(0, b/2),
we define

Hb
ε ≡ {u ∈ Hε | u(x) = 0 for |x| ≥ b/ε}.

Then, it is standard to verify that Γε ∈ C1(Hb
ε) for each b > 0. We should note that

gε(x, t) ≤ f(t), t ∈ R. (2.3)

We define an energy functional for limiting problem (1.4) by

La(u) =
1

2

∫
RN

|∇u|2 + au2 dx−
∫
RN

F (u) dx, u ∈ H1,2(RN ),

where F (t) =
∫ t

0
f(s) ds. Berestycki and Lions proved that for a = V (x), x ∈ O5δ,

there exists a least energy solution of (1.4) if f satisfies (f1), (f2) and (f3) with
a = m, and that for each solution u of (1.4),

N − 2

2

∫
RN

|∇u|2 dx+N

∫
RN

a
u2

2
− F (u) dx = 0. (2.4)
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Let Sa be the set of least energy solutions U of (1.4) satisfying

U(0) = max
x∈RN

U(x).

Then, there exist C, c > 0 such that

U(x) ≤ C exp(−c|x|), U ∈ Sa, (2.5)

and the set Sa is compact in H1,2(RN )(see [9]). We define Em = Lm(U) for U ∈ Sm.
For each t > 0 and U ∈ Sm, we define Ut(x) = U(xt ). Then, from (2.4), we see that

Lm(Ut) =

∫
RN

tN−2

2
|∇U |2 +m

tN

2
U2 − tNF (U) dx

=
( tN−2

2
− (N − 2)tN

2N

)∫
RN

|∇U |2 dx. (2.6)

Thus, there exists t0 > 1 such that Lm(Ut) < −1 for t ≥ t0, uniformly in U ∈ Sm.
Let ϕ ∈ C∞0 (RN ) be such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ δ and ϕ(x) = 0 for
|x| ≥ 2δ. Define ϕε(x) = ϕ(εx). For each x ∈Mδ and U ∈ Sm, let

Uxε (y) ≡ ϕε(y −
x

ε
)U(y − x

ε
).

We define a set Xε of approximating solutions by

Xε = {Uxε (y) | x ∈Mδ, U ∈ Sm}.
We assume that b > 0 is sufficiently large so that supp(Uxε ) ⊂ B(0, b/t0ε) for all
Uxε ∈ Xε. Then, we define Xd

ε (b) ≡ {u ∈ Hb
ε | ‖u − Xε‖ε ≤ d}. For some d > 0

and large b > 0, we will find a solution uε,b in Xd
ε (b) for sufficiently small ε > 0,

independent of large b > 0, which satisfies

∆uε,b − Vεuε,b + f(uε,b) = 0 in B(0, b/ε), uε,b = 0 on ∂B(0, b/ε).

Then, taking a limit of uε,b as b→∞, we will get a solution uε of original problem
on RN .

For a fixed U ∈ Sm, we define

Wε(y) = U(y)ϕ(εy) and Wε,t(y) = U(
y

t
)ϕ(εy),

where U is a fixed element in Sm. Then, it follows from (2.5) and (2.6) that for
large b > R and t ∈ (0, t0), Wε,t ∈ Hb

ε and

lim
ε→0

Γε(Wε,t) =
(NtN−2

2
− (N − 2)tN

2

)
Em (2.7)

uniformly for t ∈ (0, t0] and large b > R. Thus we obtain that

Dε ≡ max
s∈[0,t0]

Γε(Wε,s)→ Em as ε→ 0. (2.8)

For small d > 0, we can take η ∈ (0, 1) such that

Wε,t ∈ Xd
ε (b) for t ∈ (1− η, 1 + η).

We define

Φdε(b) = {γ ∈ C([0, t0], Hb
ε) |γ(t) = Wε,t for t ∈ (0, t0] \ (1− η, 1 + η)}

∩{γ ∈ C([0, t0], Hb
ε) |γ(t) ∈ Xd

ε (b) for t ∈ (1− η, 1 + η)}
and

Cdε (b) = inf
γ∈Φdε(b)

max
s∈[0,t0]

Γε(γ(s)).
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From (2.7), we can see that Γε(γ(t0)) < −1 for any sufficiently small ε > 0 and
γ ∈ Φdε(b).

Proposition 1. For any small d > 0, it holds that

lim
ε→0

Cdε (b) = Em uniformly for large b > 0.

Proof. Let Wε,0 = limt→0Wε,t, i.e., Wε,0 = 0. Then, it follows from (2.5), (2.6) and
(2.7) that

Cdε (b) ≤ max
t∈[0,t0]

Γε(Wε,t)→ Em as ε→ 0.

Now, it suffices to show that lim infε→0 C
d
ε (b) ≥ Em uniformly for large b > 0. We

choose φ ∈ C∞0 (RN , [0, 1]) such that φ(x) = 0 for x /∈ Oδ and φ(x) = 1 for x ∈ O.
Set φε(x) = φ(εx). Then, ‖∇φε‖L∞ ≤ Cε for some C > 0. For γ ∈ Φdε(b), we see
that for any s ∈ [0, t0],

Γε(γ(s)) = Γε(φεγ(s) + (1− φε)γ(s))

=
1

2

∫
RN

|∇φεγ(s)|2 + Vε(φεγ(s))2 dx−
∫
RN

Gε(x, φεγ(s)) dx

+
1

2

∫
RN

|∇(1− φε)γ|2 + Vε((1− φε)γ)2dx−
∫
RN

Gε(x, (1− φε)γ) dx

+

∫
RN

∇(φεγ(s)) · ∇((1− φε)γ(s)) + Vεφε(1− φε)(γ(s))2 dx

+

∫
Oδε\Oε

Gε(x, φεγ(s)) +Gε(x, (1− φε)γ(s))−Gε(x, γ(s)) dx

+
(∫

Oδε\Oε

1

ε
(γ(s))2 dx− 1

)2

+
.

We see from (2.1) that∫
Oδε\Oε

Gε(x, φεγ) dx ≥ −
∫
Oδε\Oε

G−ε (x, φεγ) dx ≥ −C0

2

∫
Oδε\Oε

(φεγ)2 dx

and ∫
Oδε\Oε

Gε(x, (1− φε)γ(s)) dx ≥ −
∫
Oδε\Oε

G−ε (x, (1− φε)γ(s)) dx

≥ −C0

2

∫
Oδε\Oε

((1− φε)γ(s))2 dx.

By the definition of gε(x, t), we see that

−
∫
Oδε\Oε

Gε(x, γ) dx ≥ −
∫
Oδε\Oε

G+
ε (x, γ) dx ≥ −1

2

∫
Oδε\Oε

ε2

βε(|x|)
(γ(s))2 dx.
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Then, it follows that for some C, independent of small ε > 0 and large b > 0,

Γε(γ(s))

≥ 1

2

∫
RN

|∇φεγ(s)|2 + Vε(φεγ(s))2 dx−
∫
RN

F (φεγ(s)) dx

+
1

2

∫
RN

|∇(1− φε)γ|2 + Vε((1− φε)γ)2 − ε2

|x|2
((1− φε)γ)2 dx

−Cε
∫
Oδε\Oε

|∇γ(s)|2 + (γ(s))2 dx

−C0

∫
Oδε\Oε

(γ(s))2 dx− 1

2

∫
Oδε\Oε

ε2

|x|2
(γ(s))2 dx

+
(∫

Oδε\Oε

1

ε
(γ(s))2 dx− 1

)2

+
.

If
∫
Oδε\Oε

(γ(s))2 dx ≥
√
ε, then

−C0

∫
Oδε\Oε

(γ(s))2 dx+
(∫

Oδε\Oε

1

ε
(γ(s))2 dx− 1

)2

+

≥ −C0

∫
Oδε\Oε

(γ(s))2 dx+ (
1√
ε
− 1)2.

Since there exists M0, independent of small ε > 0 and large b > 0, such that∫
Oδε\Oε

(γ(s))2dx ≤M0 for any γ ∈ Φdε(b), we see that

lim inf
ε→0

{
− C0

∫
Oδε\Oε

(γ(s))2 dx+
(∫

Oδε\Oε

1

ε
(γ(s))2 dx− 1

)2

+

}
≥ 0

uniformly for large b > 0. Since V (x) ≥ m for any x ∈ Oδ, we see that

1

2

∫
RN

|∇φεγ(s)|2 + Vε(φεγ(s))2 dx−
∫
RN

F (φεγ(s)) dx

≥ 1

2

∫
RN

|∇φεγ(s)|2 +m(φεγ(s))2 dx−
∫
RN

F (φεγ(s)) dx.

Hence, we have

max
s∈[0,t0]

(1

2

∫
RN

|∇φεγ(s)|2 + Vε(φεγ(s))2 dx−
∫
RN

F (φεγ(s)) dx
)
≥ Em.

The Hardy inequality in (2.2) implies that for small ε > 0,

1

2

∫
RN

|∇(1− φε)γ|2 + Vε((1− φε)γ)2 − ε2

|x|2
((1− φε)γ)2 dx ≥ 0.

Lastly, we see that limε→0

∫
Oδε\Oε

ε2

|x|2 (γ(s))2 dx = 0 uniformly for large b > 0 and

γ ∈ Φdε(b). Then, we have

lim inf
ε→0

max
s∈[0,t0]

Γε(γ(s)) ≥ Em uniformly for large b > 0 and γ ∈ Φdε(b),

which completes the proof.

We define
Γαε = {u ∈ Hε | Γε(u) ≤ α}.

For a set A ⊂ Hε and α, b > 0, we define Aα ≡ {u ∈ Hε | ‖u − A‖ε ≤ α} and
Aα(b) ≡ {u ∈ Hb

ε | ‖u−A‖ε ≤ α}.
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Proposition 2. For sufficiently small d1 > d2 > 0, there exist constants ω > 0 and
ε0 > 0, independent of large b > 0, such that ‖Γ′ε(u)‖∗Hbε ≥ ω for u ∈ ΓDεε ∩(Xd1

ε (b)\
Xd2
ε (b)) and ε ∈ (0, ε0).

Proof. To the contrary, suppose that for small d1 > d2 > 0, there exist {bi}∞i=1 ⊂
[R,∞), {εi}∞i=1 with limi→∞ εi = 0 and uεi ∈ Xd1

εi (bi) \Xd2
εi (bi) satisfying

lim sup
i→∞

Γεi(uεi) ≤ Em

and limi→∞ ‖Γ′εi(uεi)‖
∗
H
bi
ε

= 0. We may assume that d1 ≤ Em
6 . For our convenience,

we write ε for εi and b for bi. We may regard uε as an element in Hε by defining
uε(x) = 0 for |x| ≥ b/ε.

We shall get a contradiction by showing that uε ∈ Xd2
ε (b) for sufficiently small

ε > 0. Clearly this will be the case if uε is, as ε→ 0, arbitrarily close to a function
of the form (ϕεUε)(· − xε

ε ) with xε ∈Mδ, Uε ∈ Sm.
By the compactness of Sm and Mδ, there exist Z ∈ Sm and xε ∈Mδ such that

‖uε − ϕε(· − xε/ε)Z(· − xε/ε)‖ε ≤ 2d1 (2.9)

for small ε > 0. Taking a subsequence, we may assume that limε→0 xε = x0 ∈ Mδ.
We denote u1

ε = ϕε(· − xε/ε)uε and u2
ε = uε − u1

ε.
Then, we claim that

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + o(1). (2.10)

Suppose there exist yε ∈ B(xε/ε, δ/ε)\B(xε/ε, δ/2ε) and r > 0 satisfying

lim inf
ε→0

∫
B(yε,r)

(uε)
2 dy > 0.

Taking a subsequence, we can assume that limε→0 εyε = y0 for some y0 ∈M2δ and
that uε(·+ yε)→ W̃ weakly in H1(RN ) for some W̃ ∈ H1(RN ) \ {0}. Moreover W̃
satisfies

∆W̃ (y)− V (y0)W̃ (y) + f(W̃ (y)) = 0 for y ∈ RN .

Since V (y0) ≥ m, we deduce from [23] that

1

2

∫
RN

|∇W̃ |2 + V (y0)(W̃ )2 dy −
∫
RN

F (W̃ ) dy ≥ EV (y0) ≥ Em.

From the weak convergence, we see that for large R > 0,

lim inf
ε→0

∫
B(yε,R)

|∇uε|2 dy ≥
1

2

∫
RN

|∇W̃ |2 dy. (2.11)

Thus, combining (2.11) and (2.4) with a = V (y0), we see that

lim inf
ε→0

∫
B(yε,R)

|∇uε|2 dy ≥
N

2
LV (x0)(W̃ ) ≥ N

2
Em > 0. (2.12)

Then, taking d1 ≤
√
NEm/4, we reach a contradiction with (2.9). Due to the

nonexistence of such a sequence {yε}ε, we deduce from a result of Lions (see [29,
Lemma I.1]) that

lim inf
ε→0

∫
B(xε/ε,δ/ε)\B(xε/ε,δ/2ε)

|uε|p+1 dx = 0.
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Consequently, we can derive by using (f1), (f2) and boundedness of {‖uε‖L2(Oε)}ε
that

lim
ε→0

∫
RN

Gε(x, uε)−Gε(x, u1
ε)−Gε(x, u2

ε) dx = 0.

Then, since {uε}ε is bounded uniformly for large b > 0, we deduce that

Γε(uε) = Γε(u
1
ε) + Γε(u

2
ε)

+

∫
RN

ψε(1− ψε)|∇uε|2 + Vεψε(1− ψε)u2
ε dx

−
∫
RN

Gε(x, uε)−Gε(x, u1
ε)−Gε(x, u2

ε) dx+ o(1)

and thus, inequality (2.10) follows.
We now estimate Γε(u

2
ε). It follows from (2.9) that ‖u2

ε‖ε ≤ 4d1 for small ε > 0.
From conditions (f1) and (f2), there exists C > 0 that

F (t) ≤ mt2/4 + Ct2N/(N−2), t ≥ 0.

Then we see that

Γε(u
2
ε) ≥

∫
Oε

1

2
|∇u2

ε|2 +
1

2
Vε(u

2
ε)

2 − F (u2
ε) dx

+

∫
RN\Oε

1

2
|∇u2

ε|2 +
1

2
Vε(u

2
ε)

2 − ε2

2βε(|x|)
(u2
ε)

2 dx

≥
∫
Oε

1

2
|∇u2

ε|2 +
1

2
Vε(u

2
ε)

2 − m

4
(u2
ε)

2 − C(u2
ε)

2N/(N−2) dx

+

∫
RN\Oε

1

2
|∇u2

ε|2 +
1

2
Vε(u

2
ε)

2 − ε2

2|x|2
(u2
ε)

2 dx

≥
∫
Oε

1

2
|∇u2

ε|2 − C(u2
ε)

2N/(N−2) dx+
1

4

∫
RN

Vε(u
2
ε)

2 dx

+

∫
RN\Oε

1

2
|∇u2

ε|2 −
ε2

2|x|2
(u2
ε)

2 dx

=

∫
RN

1

4
|∇u2

ε|2 dx− C
∫
Oε

(u2
ε)

2N/(N−2) dx+
1

4

∫
RN

Vε(u
2
ε)

2 dx

+

∫
RN

1

4
|∇u2

ε|2 dx−
∫
RN\Oε

ε2

|x|2
(u2
ε)

2 dx

≥
∫
RN

1

4
|∇u2

ε|2 dx− C
∫
RN

(u2
ε)

2N/(N−2) dx+
1

4

∫
RN

Vε(u
2
ε)

2 dx

+

∫
RN

1

4
|∇u2

ε|2 dx−
∫
RN

ε2

|x|2
(u2
ε)

2 dx.

Since the Hardy inequality in (2.2) implies that for small ε > 0,∫
RN

1

4
|∇u2

ε|2 dx−
∫
RN

ε2

|x|2
(u2
ε)

2 dx ≥ 0,
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we obtain by Sobolev’s inequality that for some C, c > 0,

Γε(u
2
ε) ≥ 1

4
‖∇u2

ε‖2L2(1− cC‖∇u2
ε‖

4
N−2

L2 ) +
1

4

∫
RN

Vε(u
2
ε)

2 dx

+
(1

4
− 4ε2

(N − 2)2

)
‖∇u2

ε‖2L2 .

Thus, taking d1 ∈ (0, ( 1
4cC )(N−2)/4), we see that for small ε > 0,

Γε(u
2
ε) ≥

1

8
‖u2

ε‖2ε.

Now let Wε(x) = u1
ε(x+xε/ε). Taking a subsequence we can assume that Wε →

W weakly in H1(RN ) for some W ∈ H1(RN ). Moreover, W satisfies

∆W (x)− V (x0)W (x) + f(W (x)) = 0 for x ∈ RN .

From the maximum principle, we see that W is positive. Let us prove that Wε →
W strongly in H1(RN ). Suppose there exist R > 0 and a sequence {zε}ε with
zε ∈ B(xε/ε, δ/ε) satisfying

lim inf
ε→0

|zε − xε/ε| =∞ and lim inf
ε→0

∫
B(zε,R)

(u1
ε)

2 dx > 0.

We may assume that εzε → z0 ∈ O as ε→ 0. Then, Ŵε(x) = u1
ε(x+ zε) converges

weakly to Ŵ in H1(RN ) satisfying

∆Ŵ − V (z0)Ŵ + f(Ŵ ) = 0 in RN .

At this point we get a contradiction as before. Then using (f1), (f2) and [29, Lemma
I.1], we get that

lim
ε→0

∫
RN

F (Wε) dx =

∫
RN

F (W ) dx. (2.13)

Then, the weak convergence of Wε to W in H1(RN ) implies that

lim inf
ε→0

Γε(u
1
ε)

= lim inf
ε→0

1

2

∫
RN

|∇Wε(x)|2 + V (εx+ xε)W
2
ε (x) dx−

∫
RN

F (Wε(x)) dx

≥ 1

2

∫
RN

|∇W |2 + V (x0)W 2 dx−
∫
RN

F (W ) dx

≥ Em. (2.14)

Since lim supε→0 Γε(uε) ≤ Em and Γε(u
2
ε) ≥ 1

8‖u
2
ε‖2ε for small ε > 0, we see from

(2.10) that

lim sup
ε→0

Γε(u
1
ε) ≤ Em and lim

ε→0
‖u2

ε‖ε = 0. (2.15)

Then (2.14) implies that LV (x0)(W ) = Em. Also, from [23], we see that x0 ∈ M.

Clearly, W (x) = U(x− z) with U ∈ Sm and z ∈ RN . Combining (2.13), (2.15) and



STANDING WAVES 843

the fact that V ≥ V (x0) on O, we get from (2.14) that∫
RN

|∇W |2 + V (x0)W 2 dx

≥ lim sup
ε→0

∫
RN

|∇u1
ε(x)|2 + V (εx)(u1

ε(x))2 dx

≥ lim sup
ε→0

∫
RN

|∇u1
ε(x)|2 + V (x0)(u1

ε(x))2 dx

≥ lim sup
ε→0

∫
RN

|∇Wε(x)|2 + V (x0)(Wε(x))2 dx.

This proves the strong convergence of u1
ε to W in H1(RN ). In particular, setting

yε = x/ε + z we have u1
ε → ϕε(· − yε)U(· − yε) strongly in H1(RN ), which means

that
lim
ε→0
‖u1

ε − ϕε(· − yε)U(· − yε)‖ε = 0.

Since limε→0 ‖u2
ε‖ε = 0, we see that limε→0 ‖uε − ϕε(· − yε)U(· − yε)‖ε = 0, which

contradicts that uε /∈ Xd2
ε (b). Then the proof is complete.

Following Proposition 2, we fix d > 0 and corresponding ω > 0 and ε0 > 0 such

that |Γ′ε(u)| ≥ ω for u ∈ ΓDεε ∩ (Xd
ε (b) \Xd/2

ε (b)), large b > 0 and ε ∈ (0, ε0). Then,
we obtain the following proposition.

Proposition 3. There exists α > 0 such that for sufficiently small ε > 0 and large
b > 0,

Γε(γε(s)) ≥ Cdε (b)− α implies that γε(s) ∈ Xd/2
ε (b)

where γε(s) = Wε,s and s ∈ [0, t0].

Proof. Since supp(γε(s)) ⊂M2δ
ε and the function U of Wε,s(x) = U(xs )ϕ(εx) decays

to 0 in exponential order as |x| → ∞, the assertion follows from (2.7). See the
arguments of the proof of [9, Proposition 6].

Proposition 4. There exist ε0 > 0 and b0 > R such that for ε ∈ (0, ε0) and b > b0,
there exists a sequence {un}∞n=1 ⊂ Xd

ε (b) ∩ ΓDεε such that Γ′ε(un)→ 0 as n→∞.

Proof. By Proposition 3, there exists α > 0, independent of small ε > 0 and b > R,
such that for sufficiently small ε > 0 and b > R,

Γε(γε(s)) ≥ Cdε (b)− α implies that γε(s) ∈ Xd/2
ε (b).

If Proposition 4 does not hold for some small ε > 0 and large b > b0, there exists
a(ε, b) > 0 such that |Γ′ε(u)| ≥ a(ε, b) on Xd

ε (b) ∩ ΓDεε . Moreover, by Proposition
2, there exist ω > 0, independent of ε > 0, and large b > R such that |Γ′ε(u)| ≥ ω

for u ∈ ΓDεε ∩ (Xd
ε (b) \ Xd/2

ε (b)). From (2.8) and Proposition 1, we recall that
limε→0(Cdε (b)−Dε) = 0 uniformly for large b > R. Then, via a pseudo-gradient flow
on Xd

ε (b), we can deform γε to a path γ̃ε ∈ Φdε(b) satisfying Γε(γ̃(s)) < Cdε (b), s ∈
[0, 1] (refer to [9, Proposition 7] and [10, Proposition 8]). This contradiction proves
the claim.

Proposition 5. For ε ∈ (0, ε0), b > b0, Γε has a critical point uε,b ∈ Xd
ε (b)∩ ΓDεε .

Proof. Let {un}∞n=1 be a Palais-Smale sequence as given by Proposition 4 corre-
sponding to a fixed small ε > 0 and large b > 0. Since {un}∞n=1 is bounded in Hε,
un converges weakly to some uε,b ∈ Xd

ε (b). Then, it follows in a standard way that
uε,b ∈ Xd

ε (b) is a nontrivial critical point of Γε on Hb
ε . From the strong convergence
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of {un}n to uε,b in Lq(B(0, b/ε)), q ∈ [2, 2N/(N − 2)), and the weak convergence of
{un}n to uε,b in Hb

ε , we conclude that Γε(u) ≤ Dε.

Completion of the Proof for Theorem 1.1. We see from Proposition 5 that for
small d > 0, there exist ε0 > 0 and B0 > R such that for ε ∈ (0, ε0) and B > B0,
Γε has a critical point uε,b ∈ Xd

ε (b) ∩ ΓDεε satisfying

∆uε,b − Vεuε,b + gε(x, uε,b) =
4

ε
χOδε\Oεuε,b

(∫
Oδε\Oε

1

ε
u2 dx− 1

)
+

in B(0, b/ε).

(2.16)
From the maximum principle, we see that uε,b > 0 on B(0, b/ε), and that

∆uε,b − Vεuε,b + gε(x, uε,b) ≥ 0 in B(0, b/ε). (2.17)

We also see from (2.3) that

∆uε,b − Vεuε,b + f(uε,b) ≥ 0 in B(0, b/ε), (2.18)

and from the definition of gε that

∆uε,b − Vεuε,b +
ε2

βε(|x|)
uε,b ≥ 0 in B(0, b/ε) \Oε.

We take xε,b ∈ Mδ
ε such that ‖uε,b − (ϕεU)(· − xε,b)‖ε ≤ d. Suppose that there

exist εm > 0 with limm→∞ εm = 0, large bm ≥ R and xm ∈ Oε such that
limm→∞ |xεm,bm − xm| =∞, limm→∞ dist(xm, ∂Oε) =∞ and

lim inf
m→∞

uεm,bm(xm) > 0.

Then, by the same argument with (2.12) in the proof of Proposition 2, we get a
contradiction for small d ≤

√
NEm/4. Thus, we see that uε,b(x) converges to 0

uniformly for large b > R as x ∈ Oε and dist(x, ∂Oε ∪ {xε,b})→∞.
Since {‖uε,b‖ε}ε is bounded uniformly for large b > 0 and V (x) ≥ m for x ∈ O5δ,

we conclude from (2.18) and elliptic estimates through the Moser iteration argument
that {‖uε,b‖L∞(O4δ

ε )}ε is bounded uniformly for large b > R. Then, we see from the

elliptic estimate [20, Theorem 8.17] that there exists C > 0, independent of small
ε > 0, large b > 0 and y ∈ O3δ

ε satisfying

sup
x∈B(y,1)

uε,b(x) ≤ C‖uε,b‖L2(B(y,2)).

Since uε,b ∈ Xd
ε (b) and supp(v) ⊂M3δ

ε for v ∈ Xd
ε (b), we see that

sup
x∈O3δ

ε \Oε
uε,b(x) ≤ Cd/m.

Then, there exists a large a > 0 such that

∆uε,b −
m

2
uε,b ≥ ∆uε,b − Vεuε,b + f(uε,b) ≥ 0 in O3δ

ε \B(xε,b, a)

if d > 0 is small. Applying a comparison principle, we obtain that for some C, c > 0,
independent of small ε and large b > R,

uε,b(x) ≤ C exp(−cdist(x, ∂O3δ
ε ∪ {xε,b})), x ∈ O3δ

ε . (2.19)

Then, from (2.16), we see that for small ε > 0, independent of large b > R,( ∫
Oδε\Oε

1
εu

2 dx− 1
)

+
= 0; thus

∆uε,b − Vεuε,b + gε(x, uε,b) = 0 in B(0, b/ε), x ∈ O3δ
ε .
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Moreover, it follows from (2.19) that, for some C, c > 0,

uε(x) ≤ C exp(−c/ε) for x ∈ ∂Oε.

Case 1. Assume that (A1) holds. Then, we define a comparison function

Υε(|x|) =
1

|εx|N−2
(2− log 2

log( 2|εx|
R )

).

Then, we have

D0 ≡ min
x∈∂Oε

Υε(x) > 0

and for x ∈ RN \Oε,

−∆Υε + VεΥε −
gε(x, uε,b)

uε,b
Υε

≥ ε2 log 2

(ε|x|)N
( (N − 2)

(log 2ε|x|
R )2

+
2

(log 2ε|x|
R )3

)
− ε2

βε(|x|)
Υε.

Thus, taking βε(|x|) = |x|2 (log
2ε|x|
R )2

(log 2)2 ≥ |x|2 for |x| ≥ R/ε, we see that for small

ε > 0,

−∆Υε + VεΥε −
gε(x, uε,b)

uε,b
Υε ≥ 0 in B(0, b/ε) \Oε.

Now, we see that C
D0

exp(−ε/c)Υε − uε,b ≥ 0 on ∂(B(0, b/ε) \ Oε). Then from the
comparison principle, we obtain that for large b > R,

uε,b ≤
C

D0
exp(−ε/c)Υε on B(0, b/ε) \Oε. (2.20)

Since limt→0 f(t)/tµ = 0 for some µ > N/(N − 2), it follows that for sufficiently
small ε > 0 and large b > R,

f(uε,b)/uε,b ≤
ε2

βε(|x|)
on B(0, b/ε) \Oε.

Then, uε,b is a solution of

∆uε,b − Vεuε,b + f(uε,b) = 0 in B(0, b/ε), uε,b = 0 on ∂B(0, b/ε).

Then, we see that as b→∞, uε,b converges, along a subsequence, to some uε ∈ Hε

uniformly in C(RN ) and weakly inHε. Then, uε is a solution of the original problem.
By the uniform estimates (2.20), we get the required decay estimate for uε.

Case 2. Assume that (A2) holds. We take βε(|x|) = |x|2(1 + |x|). Since
lim inf |x|→∞ V (x)|x|2 > 0, we see that Z ≡ {x ∈ RN | V (x) = 0} ⊂ RN \ O
is compact. Then, we see as in Case 1 that for any large R0 > 1 and small
l > 0, there exist C ′, c′ > 0, independent of small ε > 0 and large b > 0 such that

uε,b(x) ≤ C ′ exp(− c
′

ε ) for δ/ε ≤ |x − xε| ≤ 2R0/ε and dist(εx,Z) ≥ l. We take

R0 > 0 so that V (x) ≥ 2λ/|x|2 for |x| ≥ R0. Let ψ be the positive first eigenfunc-
tion of −∆ on Z2l with Dirichlet boundary condition. Let λ1 be the corresponding
eigenvalue. We normalize ψ so that maxx∈Z2l = 1. Define ψε(x) = ψ(εx). Then we
see that for small ε > 0 and large b > R,

−∆ψε + Vεψε −
gε(x, uε,b)

uε,b
ψε ≥ (ε2λ1 −

ε2

(1 +R/ε)3
)ψε ≥ 0 in (Z2l)ε.
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Thus, by a comparison principle, we deduce that for some D > 0,

uε,b(x) ≤ Dψε exp(− c
ε

) for x ∈ (Z l)ε,

which implies that for some D′, d′ > 0, independent of small ε > 0 and large b > R,

uε,b(x) ≤ D′ exp(−d
′

ε ) if δ/ε ≤ |x−xε| ≤ 2R0/ε. Now we take a comparison function

Υε(|x|) = |x|−ωε with ωε ≡
(n−2)+

√
(n−2)2+4λ/ε2

2 . Then, we deduce from condition
(V3) that for small ε > 0,

−∆Υε + VεΥε ≥
(2λ

ε2
− ω2

ε + (n− 2)ωε

)
r−ωε−2 =

λ

ε2
|x|−ωε−2, r ≥ R0/ε.

Thus, we see that for small ε > 0 and large b > 0,(
−∆ + Vε −

gε(x, uε,b)

uε,b

)
Υε ≥

λ|x|−ωε−2

ε2
− ε2|x|−ωε

|x|2
≥ 0 in B(0,

b

ε
) \B(0,

R0

ε
).

Then, as before, we obtain that for some C, c > 0, independent of small ε > 0 and
large b > R,

uε,b ≤ C exp(− c
ε

)|εx|−ωε on B(0, b/ε) \B(0, R0/ε).

Since limt→0 f(t)/tµ = 0 for some µ > 1, we see that for small ε > 0 and large
b > R, f(uε,b)/uε,b ≤ ε2/βε(|x|) for x ∈ B(0, b/ε) \Oε. Then, uε,b is a solution of

∆uε,b − Vεuε,b + f(uε,b) = 0 in B(0, b/ε), uε,b = 0 on ∂B(0, b/ε).

Then, as in Case 1, we get a solution uε of original problem (2.16) satisfying the
required decay estimate for uε.

Case 3. Assume that (A3) holds. We take βε(|x|) = |x|2 log |x|. Then, since
lim inf |x|→∞ V (x)|x|2 log |x| > 0, by a similar procedure with the proof of the case
that (A2) holds, we see that for any large R0 > 0, there exist C ′, c′ > 0 such that

uε(x) ≤ C ′ exp(− c
′

ε ) for δ/ε ≤ |x− xε| ≤ 2R0/ε. We take R0 > 0 so that for some

h > 0, V (x) ≥ h/|x|2 log |x| for |x| ≥ R0. Then, for α > 0, we define a comparison
function

Υε(|x|) =
1

|x|N−2(log |x|)α
.

Then, we see that for some C > 0,

Dε ≡ min
x∈∂Oε

Υε(x) > CεN−1,

and for x ∈ B(0, b/ε) \B(0, R0

ε ),(
−∆Υε + VεΥε −

gε(x, uε,b)

uε,b
Υε

)
/Υε

≥ − 1

|x|2 log(|x|)

(
(N − 2)α+

α(α+ 1)

log |x|

)
+

h

|εx|2 log |εx|
− ε2

βε(|x|)
.

Note that for small ε > 0 and |x| ≥ R0/ε,

1

|εx|2 log |εx|
=

1

ε

1

|x|2 log |x|
log |x|

(ε| log ε|+ ε| log x|)
≥ 1

ε(1 + ε)

1

|x|2 log |x|
.

Thus we see that for small ε > 0, independent of large b > R,

−∆Υε + VεΥε −
gε(x, uε,b)

uε,b
Υε ≥ 0 in B(0, b/ε) \B(0, R0/ε).
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Thus, we get that for some C, c > 0, independent of small ε > 0 and large b > R,

uε,b ≤ C exp(− c
ε

)
1

|x|N−2(log |x|)α
on B(0, b/ε) \B(0, R0/ε).

Then, for some c, C > 0, independent of small ε > 0 and large b > 0, it follows from
(f1-3) that

f(uε,b)/uε,b ≤ C exp(− c
ε

)
1

|x|2(log |x|)2α/(N−2)
on B(0, b/ε) \B(0, R0/ε).

Thus, taking α > (N − 2)/2, we see that for small ε > 0, independent of large
b > R, f(uε,b)/uε,b ≤ ε2/βε(|x|) if x ∈ RN \Oε; then uε,b is a solution of

∆uε,b − Vεuε,b + f(uε,b) = 0 in B(0, b/ε), uε,b = 0 on ∂B(0, b/ε).

Then, as in Case 1 and Case 2, we get a solution uε of original problem (2.16)
satisfying the required decay estimate for uε.

3. Proof of Theorem 1.2: nonexistence. To the contrary, suppose that there
exists a positive supersolution u of (1.5). For N ≥ 2, let ū be the spherical average
of u,

ū(r) =
1

|∂Br|

∫
∂Br

u(x) dσ,

where Br = {x ∈ RN | |x| < r} and dσ is the standard volume element on ∂Br.
Then, we see from Jensen’s inequality that for large r > 0,

d2ū

dr2
+
N − 1

r

dū

dr
− W̄ (r)ū+ ūp ≤ 0,

where W̄ (r) ≡ max|x|=rW (x). For N = 1, we use ū = u, and r = ±x ∈ R for

x ∈ R± respectively. Setting w(t) ≡ rmū(r),m = 2/(p − 1) and t ≡ log r, we see
that for t large, w satisfies

w′′ + aw′ + (b− W̄ (r)r2)w + wp ≤ 0, (3.1)

where a = N−2−2m and b = m(m−N+2). Note that a < 0 for (N−2)p < N+2,
and b ≥ 0 for (N − 2)p ≤ N .

Case 1. b ≥ 0 and W̄ r2 ≤ b in a neighborhood of ∞.
We consider two exclusive cases. The first is that w′(T ) < 0 for some T large.

The other case is that w is non-decreasing near ∞.
Now, we assume the first case.
Let B(r) ≡ b − W̄ r2. Then, we have B + wp−1 ≥ 0 near ∞. Then, integrating

(3.1) over [T, t] for T large, we have

w′(t) ≤ e−a(t−T )w′(T )− e−at
∫ t

T

(B + wp−1)weas ds ≤ e−a(t−T )w′(T ),

which implies that w cannot remain positive as t → ∞ because a < 0. On the
other hand, if w is non-decreasing and bounded near ∞, then there exists w∞ > 0
such that w(t) → w∞ as t → ∞. Then, there exists a sequence {tj} entailing
limj→∞ tj =∞ such that w′(tj), w

′′(tj)→ 0 as j →∞, which implies

0 < wp∞ ≤ lim sup
j→∞

(
B(exp(tj)) + w(tj)

p−1
)
w(tj) ≤ 0,
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a contradiction. The remaining possibility is that w is non-decreasing and unbound-
ed near ∞. Setting X(t) ≡ e a2 tw(t), we have

X ′′ +D(t)X ≤ 0, (3.2)

where

D(t) ≡ B(exp(t))− a2

4
+ wp−1 →∞

as t → ∞. Multiplying both sides of (3.2) by sin t and integrating by parts over
[2kπ, (2k + 1)π] with integer k > 0, we obtain∫ (2k+1)π

2kπ

(D − 1)X sin t dt ≤ −X(2kπ)−X((2k + 1)π) ≤ 0

which leads to a contradiction since D > 1 on [2kπ, (2k+1)π] for k > 0 is sufficiently
large.

Case 2. b = 0, i.e., N = (N − 2)p, and for some δ > 0,

W (x)|x|2 log |x| ≤ (N − 2)2

2
+
N(N − 2)

4 log |x|
− δ

log(log |x|)
in a neighborhood of ∞.

We introduce a comparison function ϕ(r) := r2−N (log r)−
N−2

2 (log(log r))β for
0 < β < δ

N−2 . Then, we see that ϕ satisfies

ϕ′′ +
N − 1

r
ϕ′ −Wϕ = [δ − β(N − 2) + o(1)]

(log(log r))β−1

rN (log r)N/2

as r tends to ∞. Hence, ∆ϕ(r) − W (r)ϕ(r) ≥ 0 for r sufficiently large. Since
∆u−Wu ≤ 0, it follows from comparison principle that for some C, c > 0, u(x) ≥
Cϕ(r) for r = |x| ≥ c. Therefore, we see that for large r > 0,

B + wp−1 = −W̄ r2 + r2ū
2

N−2

≥
(
C

2
N−2 (log(log r))

2β
N−2 − W̄ r2 log r

) 1

log r
≥ 0.

Then, by the preceding argument to the first case, we see that w is nondecreasing
near ∞. We also note that for large r > 0,

B + wp−1 = −W̄ r2 +
r2

2
ū

2
N−2 +

1

2
wp−1

≥
(1

2
C

2
N−2 (log(log r))

2β
N−2 − W̄ r2 log r

) 1

log r
+

1

2
wp−1

≥ 1

2
wp−1.

Considering the case of either limt→∞ w(t) <∞ or limt→∞ w(t) =∞, we arrive at
a contradiction by the same arguments in Case 1. This completes the proof.
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