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Noise-Robust Speech Recognition Using Top-Down
Selective Attention With an HMM Classifier

Chang-Hoon Lee and Soo-Young Lee, Member, IEEE

Abstract—For noise-robust speech recognition, we incorporated
a top-down attention mechanism into a hidden Markov model clas-
sifier with Mel-frequency cepstral coefficient features. The atten-
tion filter was introduced at the outputs of the Mel-scale filterbank
and adjusted to maximize the log-likelihood of the attended fea-
tures with the attended class. A low-complexity constraint was pro-
posed to prevent the attention filter from over-fitting, and a con-
fidence measure was introduced on the attention. A classification
was made to the class with the maximum confidence measure, and
demonstrated 54 % and 68 % reduction of the false recognition rate
with 15- and 20-dB signal-to-noise ratio, respectively.

Index Terms—Hidden Markov model (HMM), selective atten-
tion, speech recognition.

I. INTRODUCTION

LTHOUGH noise-robust feature extractions based on

auditory models have demonstrated improvements in
the recognition performance [1], current speech recognition
systems continue to require significant performance improve-
ments in order to be utilized in practical applications in noisy
real-world environments. One of the approaches to improve
noise-robustness is to model top-down selective attention in
higher brain functions.

Human beings utilize top-down selective attention from pre-
acquired knowledge to improve the confidence level of recog-
nition when encountering confusing patterns. Broadbent intro-
duced the “early filtering” theory, in which the brain temporarily
retains information about all stimuli but the information fades
soon, unless attention is turned quickly to a particular memory
trace [2]. Treisman later modified Broadbent’s model and pro-
posed that the filter merely attenuates the input rather than com-
pletely eliminating it [3]. The “spot light” attention model puts
the filter at a small region of the input space, while Fukushima’s
Neocognitron model results in one adaptive attention filter at
each input pixel and intermediate complex features for binary
pattern recognition tasks [4].

Recently, top-down selective attention, which utilizes the
multilayer perceptron (MLP) for pre-acquired knowledge has
shown not only good recognition rates but also improved
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out-of-vocabulary rejection performance [5]. Moreover, it has
been reported that the retraining independent component anal-
ysis (ICA) based on selective attention associated with MLP
can result in a more accurate de-mixing matrix [6]. However,
these models utilize MLP for pre-acquired knowledge in the
higher brain whereas a hidden Markov model (HMM) is more
widely used in speech recognition.

In this letter, the top-down selective attention model is ex-
tended to HMM classifiers. In addition, a low-complexity re-
striction is imposed on the attention filter in order to avoid over-
fitting, and a new confidence measure is introduced for the clas-
sification.

II. ToP-DOWN SELECTIVE ATTENTION MODEL
WITH HMM CLASSIFIERS

The proposed speech recognition algorithm using top-down
selective attention is summarized as follows.

Step 1: Train HMMs from the training data and obtain HMM
parameters \;’s for each class.

Step 2: For a given testing speech, calculate the log-likelihood
of each HMM.

Step 3: For the top N¢ candidate classes.

1) Calculate the expected input and the attended log-likelihood
for the class by the top-down attention process.

2) Calculate the confidence measure of the class.

Step 4: Choose the class with the maximum confidence
measure.

Since the characteristics of a class are modeled as an HMM,
the top-down selective attention algorithm at Step 3 estimates
the expected input X; from the test speech x for the pre-trained
attended class model \; as

x; = arg max P(x|\;) )
within a reasonable proximity from the original input x.

Fig. 1 shows the signal flows with (solid line) and without
(dashed line) the top-down attention for the popular MFCC fea-
tures. In the absence of the top-down attention, the Mel-filter-
bank outputs go through a logarithmic nonlinearity and discrete
cosine transform (DCT) to form the MFCC. With the top-down
attention, a multiplicative attention filter may be placed at the
Mel-filterbank output, which is equivalent to an additive adjust-
ment at the log power as

<t<T
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Fig. 1. Classification model with top-down selective attention filter.

where a;y = In Ay is the logarithm of the multiplicative atten-
tion filter A;¢, and b; ¢ and by ¢ are the logarithm of the filterbank
power of the actual and expected input, respectively. Addition-
ally, T is the number of frames and F' is the number of Mel-scale
filters. by £ is then transformed into cepstral coefficients by DCT.
The cepstral coefficients with energy, and their delta and accel-
eration coefficients form the input feature x with 39 coefficients,
and are applied to HMM for speech recognition.

The adaptation of the selective attention filter is done
by maximizing the log-likelihood of the attended pattern
L = log P(x|\) with the gradient ascent algorithm as

oL

where a.y is the attention filter at time ¢ for the fth Mel-filter.
The gradient of (3) is calculated as

oL OL Oxyr Ocyr Obyy
= - 4
Oayf ZT: ; Oz, Octr Obyy Oaf @

where c;, is the 7th cepstral coefficient at time . A summation
over 7 is required for DCT, and a summation over ¢’ is needed
for the delta and acceleration coefficients. The derivative of the
log-likelihood on the speech features is derived in [7] for con-
tinuous density HMM.

As the selective attention process continues, the attended
input pattern X may move toward the most likely pattern of the
attended class, which is independent of the actual input pattern.
To prevent this over-fitting, the attention filter needs be regular-
ized by imposing low-complexity constraint. It is worth noting
that this regularization is helpful and also biologically plausible
for the filterbank output, but not for the MFCC features.

We propose to represent the attention filter as a linear sum-
mation of bilinear basis functions, i. e.,

¢ f
atf = th/f/@t/f/(t7f) = th/f/@ (t/ _ Ft, ! N_f)

t/fl tlf/
)
where the basis function is locally defined as
_ A=) @ —1fD, for[t] <land|f] <1
ot f) = {0, otherwise
(6)

and gy ¢+ is the attention filter value at the low-resolution grid

(t', f'). The original time-frequency space and low-resolution

space are related as ¢ = Ny’ and f = Ny f’. Therefore, it

is possible to reduce the complexity of the attention filter by

increasing N, and N ;. Now the adaptation is complete for g,/ .
In this letter, we define the confidence measure M; as

M; = (1 —v)log P(x|A;) + vlog P(x:|\i), @)
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Fig. 2. Log-likelihood of an attended pattern for different grid sizes.

where log P(x|A;) is the log likelihood of the original input
pattern and log P(X;|);) is that of the attended pattern to class
1. Here, ~y controls the relative importance between the two.

III. EXPERIMENTS AND RESULTS

Speaker-independent isolated word recognition experiments
were performed using isolated digit section of the AURORA
database [8]. The database, which has a vocabulary of 11 words
(the digits 1-9, “oh”, and “zero”), contains 2412 utterances for
training and 1144 utterances for testing.

After pre-emphasis with a coefficient of 0.97, an input speech
signal was framed with a 25-ms Hamming window with 10-ms
shifting. With fast Fourier transform (FFT), 23 Mel-scale filter-
banks were formed at each time frame. Left-right continuous
density HMMs were used. Each HMM had nine states with
four Gaussian mixtures with diagonal covariance, and each was
trained with the Baum-Welch algorithm with clean training data.

The attention filter was adapted until the log-likelihoods of
the attended pattern converged. In these experiments, the op-
timal «y for the best recognition performance was different ac-
cording to the level of the noise. As the noise level increased,
larger y resulted higher performance which gave more impor-
tance to the likelihood of the attended signal than the original
signal. It was determined that v = 0.7 gives the best perfor-
mance in overall level of noise, and that No > 7 does not im-
prove the performance.

Fig. 2 shows the log-likelihood of the attended input pattern
during the top-down attention process with different values of
N; and Ny. For smaller N, and Ny, the attention filter has a
tendency of over-fitting and resulting in much higher log-likeli-
hood values.

In Table I, the classification rates for the top-down attention
are compared to the baseline HMM classifier. The recognition
rates of the testing data with the smaller grid sizes were inferior
compared to those of the baseline results, which clearly illus-
trate over-fitting. When the proposed low-complexity constraint
is added, the recognition performance under a noisy condition is
greatly improved. In addition, the performance is not sensitive
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TABLE I
RECOGNITION RATES (%) WITH DIFFERENT GRID SIZES. (v = 0.7, No = 6)
Grid SNR with White Gaussian Noise
Size
N,xN, clean | 20dB | 15dB | 10dB | 5dB
Baseline 99.8 97.8 93.5 73.3 43.4
Ix1 85.9 53.5 | 434 | 30.1 19.1
2x2 85.0 60.8 49.8 31.6 21.1
The Same 4x4 | 994 | 965 | 92.1 | 787 | 47.1
Grid Sizes
o 8x8 99.6 | 989 | 969 | 89.7 | 62.1
with Time
and 12x12 99.8 98.7 97.0 91.0 65.8
Frequency 16x16 99.8 | 99.0 | 963 | 90.6 | 632
20x20 99.8 99.0 96.9 90.0 64.1
22x22 99.8 98.8 97.0 90.9 66.3
04x o0 99.8 99.3 96.9 87.1 60.6
Grid Sizes
with Time 08x o0 99.8 | 992 | 969 | 865 | 59.1
Only (Same 12x 99.8 99.2 96.6 87.0 57.1
Attention | 16v | 99.8 | 992 | 965 | 860 | 55.8
Filter for All
20x 00 99.8 | 99.0 | 969 | 86.7 | 56.1
Frequency)
24x 0 99.8 99.2 96.9 86.5 53.9

to grid size when the grid size is big enough. The false recog-
nition rates decrease from 2.2% to 0.7% for 20-dB SNR and
from 6.5% to 3.0% for 15-dB SNR. These dramatic reductions,
68% and 54%, respectively, of the false recognition rate become
smaller as the speech becomes noisier. This is similar to find-
ings in cognitive science in which the effects of the top-down
attention are significant only with familiar input patterns.

In (1), our attention filter is adjusted to maximize the like-
lihood of the input pattern. However, it maximizes a posterior
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probability P();|x) only when P(x) is fixed or not much
changed. This is possible reason of worse performance with
small grid size where the attended pattern moves far from the
original input. In this case, the normalization of (7) by P(x)
may improve the classification performance.

The system showed good performance with stationary white
Gaussian noise. In addition, the model can be applied to the
nonstationary noise, because the multiplicative attention filter
is not adjusted by the stationarity of the noise.

IV. CONCLUSION

A top-down selective attention model with an HMM classi-
fier along with a low-complexity constraint is proposed. The
top-down attention model iteratively determines the most-likely
input pattern from noisy or corrupted input within the proximity
of the input pattern. By introducing regularization on the at-
tention filter in addition to a confidence measure, the proposed
top-down attention model can greatly improve recognition rates
in moderately noisy environments.
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