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Abstract. The authors propose a self-reconfigurable approach to perform
H.264/AVC variable block size motion estimation computation on field-
programmable gate arrays. We use dynamic partial reconfiguration to
change the hardware architecture of motion estimation during run-time.
Hardware adaptation to meet the real-time computing requirements for
the given video resolutions and frame rates is performed through
self-reconfiguration. An embedded processor is used to control the recon-
figuration of partial bitstreams of motion estimation adaptively. The partial
bitstreams for different motion estimation computation arrays are com-
pressed using LZSS algorithm. On-chip BlockRAM is used as a cache to
pre-store the partial bitstreams so that run-time reconfiguration can be fully
utilized. We designed a hardware module to fetch the pre-stored partial
bitstream from BlockRAM to an internal configuration access port. Com-
parison results show that our motion estimation architecture improves
toward data reuse, and the memory bandwidth overhead is reduced.
Using our self-reconfigurable platform, the reconfiguration overhead
can be removed and 367 MB∕ sec reconfiguration rate can be achieved.
The experimental results show that the external memory accesses
are reduced by 62.4% and it can operate at a frequency of 91.7 MHz.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51
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Subject terms: bitstream compression; configuration speed; dynamic partial
reconfiguration; field-programmable gate array; motion estimation.

Paper 111607 received Dec. 20, 2011; revised manuscript received Feb. 24, 2012;
accepted for publication Feb. 28, 2012; published online Apr. 24, 2012.

1 Introduction
The H.264/AVC video compression standard developed by
the ITU-T Video Coding Experts Group and the ISO/IEC
Moving Picture Experts Group provides many advanced
coding techniques, such as integer discrete cosine transform
(DCT), intra prediction in the spatial domain, multiple refer-
ence pictures, variable block size motion estimation and
compensation, context adaptive variable length coding,
and context adaptive binary arithmetic coding to achieve
higher coding efficiency.1–3 Among these coding techniques,
motion estimation (ME) plays a key role to reduce temporal
redundancy in the video coding processes.4 However, motion
estimation engine demands extremely high computing
capability especially in the H.264/AVC standard due to its
support for a wide range of block sizes. H.264/AVC standard
supports motion estimation for seven different block sizes,
i.e., 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and
4 × 4. While the number of bits required for motion vector
encoding can be reduced by selecting 16 × 16 macro block
(MB) size, a smaller block size, such as 4 × 4, can increase
the possibility of finding a better matching block in the pre-
vious frame so that its resultant residual errors to be encoded
can be further reduced. Therefore, variable block size motion
estimation can choose its block size dynamically to achieve
higher coding performance in the video encoder. However,
its computational complexity is increased significantly.
Therefore, optimized hardware architecture that can support

for variable block size motion estimation becomes essential
for real-time video encoding applications. It is shown that a
motion estimation module consumes more than 60% of time
in the complete video codec system.5

The full search block matching motion estimation algo-
rithm is often employed for the selection of the best motion
vector with the use of sum of absolute differences (SAD)
criterion. While computationally intensive, the full search
method has been preferred in hardware implementations
due to its high algorithmic performance, regular data flow,
and scalable architecture. For variable block size motion esti-
mation (VBSME) supported in H.264/AVC, the SADs of
smaller 4 × 4 blocks can be computed first and then merged
to form blocks of seven different sizes.6,7 This paper pro-
poses a self-reconfigurable full search variable block size
ME architecture to compute SADs and corresponding
motion vectors (MVs).

When it comes to real-time implementation of such
techniques using a reconfigurable hardware platform on
field-programmable gate arrays (FPGA), adaptability of
computing systems to support various multimedia formats
and equipment with different computational requirements
is highly desirable. However, it significantly reduces the
benefits to adopt pre-constructed intellectual property (IP)
cores on the reconfigurable hardware platform since these
traditional pre-constructed IP cores suitable for the standard
application-specific integrated circuit (ASIC) design flow
cannot change its own architecture efficiently to adapt to
changing environments. In this paper, we design a modular
architecture for ME, which can make use of reconfigurable0091-3286/2012/$25.00 © 2012 SPIE
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hardware in FPGA efficiently to support different video reso-
lutions and frame rates and enhance data reuse and memory
bandwidth overhead by autonomous configurations of
processing element (PE) arrays during run-time.

Dynamic partial reconfiguration is to change the
configuration of parts of the FPGA while the rest is still
working.8–10 Self-reconfiguration usually involves an
embedded processor to control the reconfiguration process
so that the FPGA system can be reconfigured automatically.
We develop a self-reconfigurable platform using FPGA to
implement our variable block size ME architecture. As a
result, our scalable ME design can change the architecture
adaptively according to the given computing requirements,
such as video resolutions and frame rates. In addition, bit-
streams’ sizes and their reconfiguration time are also reduced
by dynamic partial reconfiguration.

For the experiments, we use internal configuration access
port (ICAP) as a configuration interface and PowerPC as an
embedded processor to control the autonomous reconfigura-
tion during run-time in the proposed self-reconfigurable plat-
form. We use LZSS algorithm to compress the partial
bitstreams first, and compressed partial bitstreams are stored
on the compact flash card in order to reduce overall external
memory accesses. Then, we use embedded processor to
decompress the partial bitstream of ME and store it into
the on-chip BlockRAM to reduce the reconfiguration over-
head. In addition, a hardware core designed to fetch the
partial bitstream from on-chip BlockRAM to ICAP for

reconfiguration is used to minimize the reconfiguration over-
head from PowerPC.

The main contributions of our work are: first, a self-
reconfigurable design for variable block size ME computa-
tion using PowerPC and reconfigurable fabrics on FPGA;
second, a scalable full search ME architecture with regular
data flow, low memory addressing complexity, and high
computational capability; third, a configuration manager
for choosing different ME configuration modes during
run-time; fourth, a self-reconfiguration approach using com-
pressed ME bitstreams to reduce external memory accesses
and storage sizes; fifth, using BlockRAM to prefetch the
partial bitstream of ME for fast reconfiguration speed and
a customized hardware module to reduce the reconfiguration
overhead from PowerPC.

The rest of this paper is organized as follows. In Sec. 2,
we present our proposed self-reconfigurable platform for
motion estimation in H.264/AVC. In Sec. 3, we show the
experimental results and our analysis. In Sec. 4, we briefly
conclude our work.

2 Proposed Aproach for Fast Reconfiguration
of Motion Estimation in H.264/AVC

2.1 Reconfigurable Motion Estimation Architecture

For a block-based ME, its basic function is to find out the
best matching block by calculating the distortion between
the current image block and all candidate blocks in the search

Fig. 1 Different block sizes for motion estimation in H.264/AVC standard.

Fig. 2 Number of blocks covered when the number of PRRs in active mode is one, two, and four. More divisions imply higher degree of parallelism
in concurrent processing.
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range of the reference frame. Let the block size be N × N and
location of each block in the current frame C is represented
by ði; jÞ. This block must be matched with a block within the
search window ðh; vÞ in the reference frame. SAD of such
searching candidate block is given by

SADði;jÞðh; vÞ ¼
XN−1

x¼0

XN−1

y¼0

jcði;jÞðx; yÞ − swði;jÞðxþ h; yþ vÞj;

(1)

where cðx; yÞ and swðx; yÞ represent pixel values in the
current block and the search candidate block in the search
window, respectively.

In H.264/AVC, seven different block sizes are specified
for prediction process as shown in Fig. 1. Therefore, an

ideal encoder has to examine all possible 259 combinations
of MBmodes to select the best among them. Hence, VBSME
improves motion tracking over a fixed block size algorithm
especially by giving attention to highly active sub-blocks.
A 4 × 4 block can be considered as a basis block. Using SAD
of this sub-block, SADs of larger blocks can be computed by
simply adding the corresponding sub-blocks’ SADs. Since
16 × 16 macro block can be divided into seven different
kinds of sub-blocks, including 16 × 16, 16 × 8, 8 × 16,
8 × 8, 8 × 4, 4 × 8, and 4 × 4 as in Fig. 1, a total of 41 sub-
blocks (1þ 2þ 2þ 4þ 8þ 8þ 16) have to be evaluated
for the motion vector selection.

Partial reconfigurable regions (PRRs) defined on FPGA
are very useful to implement multiple functions by using
partial bitstreams, which can time-share the same FPGA
resources. Here, the full search block matching motion

Fig. 3 16 × 1 PEs for SAD computation in each PRR.

Optical Engineering 047008-3 April 2012/Vol. 51(4)

Lee, Ryu, and Kim: Self-reconfigurable approach for computation-intensive motion estimation : : :

Downloaded from SPIE Digital Library on 26 Jun 2012 to 143.248.118.107. Terms of Use:  http://spiedl.org/terms



estimation algorithm is separated into different PRRs. Each
PRR is used to implement motion estimation PE arrays. They
generate minimum SAD and motion vector for smaller 4 × 4
blocks, starting from the top left block vertically downwards.
For example, if only one PRR is configured, the SADs of all
the 4 × 4 blocks are computed by the FPGA resources in this
PRR only. If two PRRs are configured, the first PRR com-
putes SADs of the top eight blocks and the second one does
SADs of the bottom eight blocks in parallel, and so on as
shown in Fig. 2.

Figure 3 shows the internal structure of a 16 × 1 PE array
implemented. This unit consists of 16 PEs responsible for
simultaneously calculating SADs of all the search locations
of one row ½−8;þ7� (i.e., 16 pixels) in the search window.
The four PRRs are responsible for calculating SADs of four
different blocks simultaneously. Among these, one, two, or
four PRRs can be configured for computation. Now, if only
one PE array is used for a specific block, then parallelism
exists row-wise. By increasing the number of such PRRs
and implementing synchronized data flow for maximizing
data reuse, the SADs and MVs of neighboring 4 × 4 blocksFig. 4 Scanning of pixel information in the search window ½−8;þ7�.

Table 1 Dataflow when one PRR is used for motion estimation with search window ½−8; þ 7�.

swðh; vÞ Cði ;jÞðx; yÞ SAD locations ðh; vÞ
SADði ;jÞ, i.e., SADs of corresponding 4 × 4

Block Cði ;jÞ (# of PRR ¼ 1)

swð−8;−8Þ − ð−8; 10Þ

swð−7;−8Þ − ð−7; 10Þ Cð0;0Þð0;0Þ − Cð0;0Þð0;3Þ

swð−6;−8Þ − ð−6; 10Þ Cð0;0Þð1;0Þ − Cð0;0Þð1;3Þ

swð−5;−8Þ − ð−5; 10Þ Cð0;0Þð2;0Þ − Cð0;0Þð2;3Þ

swð−4;−8Þ − ð−4; 10Þ Cð0;0Þð3;0Þ − Cð0;0Þð3;3Þ

swð−3;−8Þ − ð−3; 10Þ Cð0;0Þð0;0Þ − Cð0;0Þð0;3Þ ð−8;−8Þ − ð−8;7Þ While calculating SADs in the given search
window, Min. SADð0;0Þ will be selected at the
end of the cycles.swð−2;−8Þ − ð−2; 10Þ Cð0;0Þð1;0Þ − Cð0;0Þð1;3Þ ð−7;−8Þ − ð−7;7Þ

swð−1;−8Þ − ð−1; 10Þ Cð0;0Þð2;0Þ − Cð0;0Þð2;3Þ ð−6;−8Þ − ð−6;7Þ

swð0;−8Þ − ð0;10Þ Cð0;0Þð3;0Þ − Cð0;0Þð3;3Þ ð−5;−8Þ − ð−5;7Þ

swð1;−8Þ − ð1;10Þ Cð0;0Þð0;0Þ − Cð0;0Þð0;3Þ ð−4;−8Þ − ð−4;7Þ

swð2;−8Þ − ð2;10Þ Cð0;0Þð1;0Þ − Cð0;0Þð1;3Þ ð−3;−8Þ − ð−3;7Þ

swð3;−8Þ − ð3;10Þ Cð0;0Þð2;0Þ − Cð0;0Þð2;3Þ ð−2;−8Þ − ð−2;7Þ

swð4;−8Þ − ð4;10Þ Cð0;0Þð3;0Þ − Cð0;0Þð3;3Þ ð−1;−8Þ − ð−1;7Þ

swð5;−8Þ − ð5;10Þ Cð0;0Þð0;0Þ − Cð0;0Þð0;3Þ ð0;−8Þ − ð0;7Þ

swð6;−8Þ − ð6;10Þ Cð0;0Þð1;0Þ − Cð0;0Þð1;3Þ ð1;−8Þ − ð1;7Þ

swð7;−8Þ − ð7;10Þ Cð0;0Þð2;0Þ − Cð0;0Þð2;3Þ ð2;−8Þ − ð2;7Þ

: : : Cð0;0Þð3;0Þ − Cð0;0Þð3;3Þ ð3;−8Þ − ð3;7Þ

: : : : : : ð4;−8Þ − ð4;7Þ

: : : : : : ð5;−8Þ − ð5;7Þ

: : : : : : ð6;−8Þ − ð6;7Þ

: : : : : : ð7;−8Þ − ð7;7Þ
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are computed in parallel, hence improving performance per
MB. Partial bitstreams of motion estimation PE arrays are
used as libraries by the embedded processor to provide
real-time high throughput computing capabilities with recon-
figurable hardware fabrics on FPGA.

In the proposed architecture, the search window is divided
into five columns, and the pixel data are scanned simulta-
neously from these columns as shown in Fig. 4. During
the initial four clock cycles, the pixel information of the
first row in the search window is stored in the latches,
and in the next clock cycle, the current pixel information
(cð0; 0Þ) becomes available to each PE when it starts SAD
computations. During this cycle, the next row pixel informa-
tion of the search window is continuously read and pipelined
into the latches as shown in Fig. 3. These partial SADs are
stored in each PE, and after 16 clock cycles, SADs are pro-
pagated into the comparator unit for motion vector selection.
According to the number of PRRs operating, the controller
unit can efficiently have the data flow pipelined among the
PRRs to increase data reuse. Table 1 shows data flow when
one PRR is used to implement a 16 × 1 PE array for SAD
computations.

2.2 Self-Reconfigurable Platform for ME

In our previous work,11 modular-based architecture for ME
has been proposed to demonstrate its scalable computing
capability to support different video resolutions and frame
rates by dynamic partial reconfiguration of PE arrays on
FPGA during run-time. In this paper, we extend our previous
work to improve reconfiguration speed of partial bitstreams
to implement the proposed ME algorithm in H.264/AVC by

employing bitstream compression through the LZSS algo-
rithm and On-Chip BlockRAM as bitstreams’ internal cache.

Since reconfiguration time is very critical for many appli-
cations, such as real-time multimedia processing, many
approaches have been proposed to reduce the reconfiguration
time. In Ref. 12, a waveform-like architecture based on data
graph is used to reduce reconfiguration overhead. The partial
bitstreams stored on the external SRAM memory are loaded
using MicroBlaze processor serially. In Ref. 13, an area effi-
cient ICAP controller was designed and connected to the
processor local bus (PLB). The required bitstreams are pre-
loaded from a CF card into DDR SDRAM during initializa-
tion phase. Their ICAP controller can access the bitstreams
from the SDRAM. Due to the partial bitstreams stored on the
external memory for Refs. 12 and 13, the overall reconfi-
guration overhead to perform dynamic partial reconfigura-
tion is increased. In Ref. 14, the compressed partial
bitstreams are stored on the BlockRAM, and a hardware
core was implemented to load the partial bitstreams to
ICAP directly for reconfiguration. However, their approach
requires decompression operations during the reconfigura-
tion process, which increases real-time reconfiguration over-
head. In addition, their approach will be inefficient when the
number of partial bitstreams is increasing since they store all
the partial bitstreams in the BlockRAM.

In our design, while ME computation is performed, the
next compressed partial bitstream to be used for increasing
or decreasing the throughput of ME computation is loaded
and decompressed through PowerPC, and the decompressed
partial bitstream is pre-stored into the BlockRAM. There-
fore, the proposed approach can provide two benefits.

Fig. 5 Self-reconfigurable platform for scalable ME computation.
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First, latency overhead for loading and decompressing the
partial bitstream of ME from the off-chip memory can be
hidden since these operations are performed during the
normal ME computation. Second, BlockRAM size can be
reduced since only one partial bitstream to adjust ME
throughput is pre-stored into the BlockRAM. Therefore,

the proposed approach can enhance real-time reconfiguration
rate and be more adaptable according to the required com-
puting capability, which can vary based on the input resolu-
tion and frame rate of video sequences.

The self-reconfigurable platform for our scalable ME
design is shown in Fig. 5. The PowerPC is used to implement
the configuration manager that provides self-reconfiguration
capability. It also prefetches the compressed partial bit-
stream, decompresses, and stores it in the BlockRAM on
the FPGA. LZSS, i.e., a dictionary-based lossless data com-
pression algorithm is used for bitstreams’ compression.15 It
attempts to replace a string of symbols with a reference to a
dictionary location of the same string. Its decoding steps are
shown as follows:16

1. Initialize the dictionary to a known value.

2. Read the encoded/not encoded flag.
3. If the flag indicates an encoded string:

3(a). Read the encoded length and offset, then copy
the specified number of symbols from the dic-
tionary to the decoded output.

3(b). Otherwise, read the next character and write it to
the decoded output.

4. Shift a copy of the symbols written to the decoded out-
put into the dictionary.

5. Repeat from 2 until the entire input has been decoded.

The BlockRAM in Fig. 5 is a dual-port RAM on FPGA.
“dataA” and “dataB” are two data ports of the RAM with 32-
bit width. “addrA” and “addrB” are two address ports of the
RAM with 14-bit width. “weA” is the write enable signal
used for write or read operations of the RAM. The depth
of the BlockRAM is made large enough to fit the largest par-
tial bitstream of ME. The initial configuration file and all the
partial bitstream files for ME are stored in the compact flash,
and System ACE is used to connect the compact flash to the
PLB Bus. Universal asynchronous receiver transmitter
(UART) is used as a user interface through HyperTerminal.
The Configuration Interface module developed is the
customized hardware module, which controls the run-time

Fig. 6 Layout of our design.

Table 2 Comparison of original bitstreams and compressed bitstreams.

Original bitstream
(Bytes)

Compressed bitstream
(Bytes)

# of accesses—
Original

# of accesses—
Compressed

Accesses
saving

Reconfig. time
(μsec)

PRR1 71676 41042 140 81 42.1% 206.6

Blank1 36432 6676 72 14 80.6% 105

PRR2 41431 41431 141 81 42.6% 207.4

Blank2 7576 7576 81 15 81.5% 119

PRR3 45418 45418 182 89 51.1% 268

Blank3 11632 11632 122 23 81.1% 179.3

PRR4 49907 49907 180 98 45.6% 264.3

Blank4 16490 16490 132 33 75% 194.4
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reconfiguration, i.e., sending the partial bitstream of ME
from BlockRAM to ICAP directly to reduce the loads of
the PowerPC. The control flow of the configuration interface
module is shown as below:

1. Assert “we_ICAP,”which is the write enable pin of the
ICAP interface.

2. After at least one clock cycle, assert “ce_ICAP,”which
is the chip enable pin of the ICAP interface.

3. Send 32 bits configuration data on din_ICAP while
checking “busy_ICAP” signal from ICAP. It is the
handshaking signal, indicating whether ICAP is
ready to accept new configuration data or not.

4. Increase address counter.
5. If it is final address, go to 6, else go to 3.
6. Wait at least eight clock cycles.
7. Deassert “ce_ICAP.”
8. Deassert “we_ICAP” after at least one clock cycle.

The “length” signal provides the length of the bitstream to
the Configuration Interface module, and the “start” signal is
used to initiate the reconfiguration process. These signals
with “addrA,” “dataA,” and “weA” are all generated by
PowerPC via PLB Bus to interact with ICAP.

The ME module is divided into a static region and a
reconfigurable region. The static region of the ME module
consists of the current frame buffer, reference frame buffer,
controller, parallel to serial out, and SAD buffer. These
modules remain unchanged after initial configuration.
The controller generates the address to fetch the data
from the current frame buffer and the reference frame buf-
fer. The final results of 12 bits SAD value and 8 bits motion
vector information are stored in the SAD buffer. In this
work, four modules, i.e., from PE Array1 to PE Array4,
are included and tested to implement scalable ME compu-
tation. Each module is defined as a partial reconfigurable
region. Bus macros (BMs) are used to connect signals
between the static region and each partial reconfigurable
region.

Internal buffers are used to store pixel information of the
reference frame and the current frame. In our implementa-
tion, we use quarter common intermediate format (QCIF)
images (176 × 144 resolution) and 16 × 16 MB to calculate
16 minimum SADs of 4 × 4 blocks. The search range used
for our implementation purpose is ½−8;þ7�. The control unit
is responsible for the data flow for the reference frame and
the current frame into the PE arrays. This module takes con-
trol of the full search process and synchronizes data flow of
all the components. Data is broadcasted and shifted with the
clock signal into the PEs from internal buffers. SADs and
MVs coming from different PRRs are stored into the
SAD buffer.

3 Experimental Results
In this section, we discuss the performance of our proposed
ME architecture for different operating PRRs with internal
fixed PE array (16 × 1). Our self-reconfigurable design is
implemented in Xilinx Virtex-4 ML410 development sys-
tem. Xilinx EDK is used to create the embedded processor
system on FPGA. ISE is used for the synthesis process, and
Planahead is used for floorplanning, placement, and routing.
The compressed partial reconfigurable bitstreams for ME
and system.ace files are stored in the compact flash card.
The initial system.ace file size is 2.72 MB. Once the
FPGA is powered on, it is configured with the initial con-
figuration bitstream. If we use non-partial reconfiguration
approach, for example, three ace files consuming 8.16 MB
are needed to implement three types of ME modules.
Therefore, the non-partial reconfiguration approach to imple-
ment the proposed ME computation becomes quite ineffi-
cient due to the increasing size of the bitstreams and longer
latency to load them from the external memory, which limits
real-time adaptive computing capabilities of ME modules
according to time-varying characteristics of incoming video
sequences.

To fully utilize the dynamic partial reconfigurable cap-
abilities of the FPGA device, we first generated the initial
configuration bitstream with empty BlockRAM. Then, par-
tial bitstreams for different ME modules are generated. After
storing all of the initial configuration bitstream and the par-
tial bitstreams on the compact flash, the FPGA is ready to be
powered on. First, the device is configured with the initial
bitstream, and the compressed partial bitstream of ME is pre-
fetched from the CF card and decompressed by the PowerPC
while the ME computation is being performed. Then, the
decompressed partial bitstream is stored in the BlockRAM
within the FPGA so that the Configuration Interface module
is able to initiate the required dynamic partial reconfiguration
by sending the configuration data from BlockRAM to the

Table 3 Hardware resources.

Slice Flip Flops LUTs RAM16

Configuration I/F &
BlockRAM modules

58 37 58

Table 4 Comparison of reconfiguration rates.

Ref. 12 Ref. 13 Ref. 14 Proposed

Reconfiguration Rate 5.1 MB∕ sec 94.88 MB∕ sec 50 MB∕ sec 367 MB∕ sec

Device Virtex 2-2000 Virtex-II Pro Spartan-3S200 Virtex-4 FX60

ICAP Frequency 66 MHz 100 MHz 50 MHz 100 MHz
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ICAP interface directly. The layout of our design in Fig. 6
shows PowerPCs and four partial reconfiguration regions.
The rest of the area is used as a static region.

Thirty-two-bit wide 100 MHz ICAP interface is available
for fast reconfiguration of Virtex-4 devices. Our reconfigura-
tion rate is 367 MB/sec, and the maximum frequency of our
design is 91.7 MHz. The overall compressed bitstream size
for four modules implemented in this work is 215 KB,
including four blank partial bitstreams and four functional
partial bitstreams of ME, as shown in Table 2. The original
partial bitstreams’ size is 523 KB. Therefore, the overall
bitstream size is reduced by 58.9% through the compres-
sion of the original partial bitstreams of ME. We use blank
partial bitstream to configure the PRR so that it has no
switching activities, resulting in reduction of dynamic power
consumption.

Comparison of external memory accesses to load original
partial bitstreams and compressed partial bitstreams is also
included in Table 2. Each time PowerPC accesses the CF
card, it fetches 512 bytes of configuration data. The number
of external memory accesses is reduced by 62.4% on average
due to the compression of the partial bitstreams. The hard-
ware resources required to implement the Configuration
Interface module and the BlockRAM module are shown
in Table 3.

As shown in Table 4 for comparison with previous
works,12–14 the proposed method achieves the reconfigura-
tion rate of 367 MB/sec. The main reason for this improve-
ment is that we use the 100 MHz 32-bit ICAP mode for the
fast reconfiguration. Furthermore, using on-chip BlockRAM
as a configuration cache to pre-store the partial bitstream of
ME can remove all the latency overhead caused by the PLB
bus operations and the time for accessing external memory.
Therefore, our approach can achieve the maximum reconfi-
guration speed of Virtex-4 FPGA while performing compu-
tation-intensive ME operations using reconfigurable fabric
on FPGA.

Table 5 shows bit widths for the reference frame and
current frame, and bandwidth for the reference frame, sum-
marizing the level of parallelism and data reuse. Here, the
memory bit width is defined as the number of bits that
the algorithm accesses from the memory in each cycle. It
is one of the factors to determine efficient memory manage-
ment and degree of parallelism. Memory bandwidth is
defined as the number of memory accesses to complete
ME for each MB. It is the one to determine the efficient
data reuse capability. Table 5 shows that the proposed

approach is highly scalable, and data reuse is significantly
enhanced by increasing the number of PRRs when compared
to Ref. 17. While only one PRR can be configured in
applications where hardware resource is a critical factor,
the proposed reconfigurable ME engine can speed up with
the increase in PRRs.

4 Conclusion
We present an FPGA design for the proposed variable block
size scalable ME algorithm using dynamic partial reconfi-
guration. Its modular design and regular data flow structure
make it attractive for the implementation of full search vari-
able block size algorithm. Simulation results show that our
design can increase data reuse significantly and thereby
reduce the memory bandwidth overhead. Compressed bit-
streams are used to reduce external memory accesses and
storage sizes. BlockRAM is used as a cache to reduce the
reconfiguration overhead. The whole design is implemented
in Virtex-4 ML410 evaluation board. The PowerPC is
included to control the reconfiguration of scalable ME archi-
tecture to exploit trade-offs among different requirements set
by the system. It also controls the prefetching and decom-
pression of the partial bitstreams. Experimental results
show that our approach can reduce the external memory
accesses by 62.4%, and achieve 367 MB∕ sec reconfigura-
tion rate.
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