Characterization of 1D photonic crystal nanobeam cavities using curved microfiber: erratum

B. C. Richards,¹ J. Hendrickson,² J. D. Olitzky,³ R. Gibson,³ M. Gehl,^{3,*} K. Kieu,³ U. K. Khankhoje,⁴ A. Homyk,⁵ A. Scherer,⁵ J.-Y. Kim,⁶ Y.-H. Lee,⁶ G. Khitrova,³ H. M. Gibbs³

¹Advanced Concepts Team, Emcore Corporation, Albuquerque, NM 87123, USA ²Air Forces Research Laboratory, Sensors Directorate, Wright Patterson AFB, OH 45433, USA ³College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ⁵Electrical Engineering and Kavli Nanoscience Institute, California Institute of Technology,Pasadena, CA 91125, USA

⁶Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea *mgehl@optics.arizona.edu

Abstract: An error was made in the calculation of the photonic crystal mode volume. Fixing this error increases our mode volumes by a factor of two and makes our claim of highest Q/V invalid.

©2010 Optical Society of America

OCIS codes: (350.4238) Nanophotonics and photonic crystals; (140.3948) Microcavity devices.

References and links

- B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, H. M. Gibbs, "Characterization of 1D photonic crystal nanobeam cavities using curved microfiber," Opt. Express 18(20), 20558–20564 (2010).
- A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16(16), 12084– 12089 (2008).

In our article [1], we state that the mode volume of the 1D photonic crystal nanobeam cavities is $0.27(\lambda/n)^3$. This value appears in the caption for Fig. 1, in the last paragraph of section 4 and in the conclusion. Recently, it was discovered that a factor of two error was made in the calculation of cavity mode volume. This error results in an increase in the mode volume of these cavities to $0.54(\lambda/n)^3$.

We make the claim in the last paragraph of the introduction, at the end of section 4 and in the conclusion that we have observed the highest Q/V ratio as of the date of publication. Using this new mode volume, and our reported highest Q of 75,000, our calculated Q/V ratio becomes 139,000. This value is no longer larger than the Q/V ratio of 173,000 reported by the group of De La Rue [2], making our claim invalid.