Supporting Information

Anisotropic wetting and superhydrophobicity on holographically-

featured 3D nanostructured surfaces

Sung-Gyu Park, Jun Hyuk Moon, Hwan Chul Jeon and Seung-Man Yang*

*E-mail address: smyang@kaist.ac.kr

This supplementary information includes

Captions of Supplementary Video Clips (Video S1-S4) Supplementary Figures (Figure S1-S3)

Video S1. Anisotropic wetting of the as-prepared woodpile structures. This video shows the rotation of a drop around the z-axis. The contact angle (CA) measured from the direction orthogonal to the top rods is defined as θ_x (= 85°) and from the direction to parallel to the top rods is θ_y (= 70°). From these two CAs measurement, the wetting anisotropy, $\Delta\theta$ ($\theta_x - \theta_y =$ 15°), is defined.

Video S2-S3. Investigating the wetting state of the droplet on the 3D woodpile surface. A

0.5 (Video S2) and 0.3 μ L (Video S3) water droplet placed on an as-prepared SU-8 woodpile surface shows a stable and static wetting state. The video recorded from the direction to parallel to the top rods.

Video S4. Water affinity test of the ultrahydrophobic surfaces with advancing and

receding CAs of 170°. This video shows the receding contact line pinning due to the slight water affinity of the SU-8 nanopatterned surface with a tip size of 30 nm.

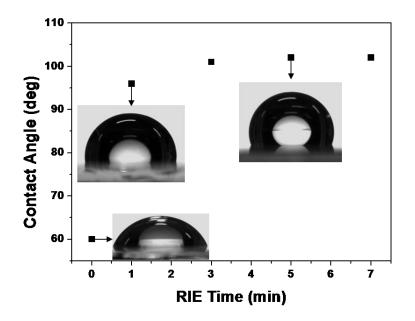


Figure S1. Water contact angle measurements of the cross-linked SU-8 smooth surfaces as a function of the RIE time.

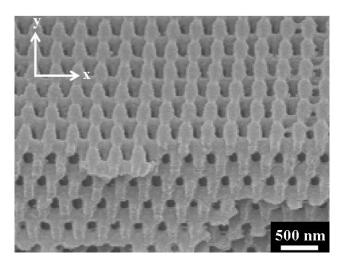


Figure S2. A tilted (45°) SEM image of as-prepared woodpile structures with a lattice constant of 350 nm. The 200 nm rods are arranged with *y* axis parallel on the top layer.

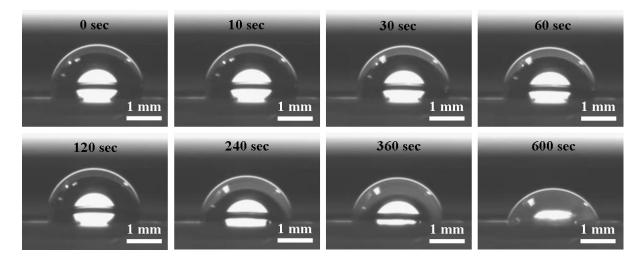


Figure S3. Sequence images of a 1 μ L water droplet on an as-prepared SU-8 woodpile surface according to time.