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Abstract: We propose a simple, sensitive measure of synonymous codon usage bias, the Relative Codon Adaptation Index (rCAI), as a 
way to discriminate better between highly biased and unbiased regions, compared with the widely used Codon Adaptation Index (CAI). 
CAI is a geometric mean of the relative usage of codons in a gene, and is calculated using the codon usage table trained with a set of 
highly expressed genes. In contrast, rCAI is computed by subtracting the background codon usage trained with two noncoding frames of 
highly expressed genes from the codon usage in the coding frame. rCAI has higher signal-to-noise ratio than CAI, considering that non-
coding frames would not show codon bias. Translation efficiency and protein abundance correlates comparably or better with rCAI than 
CAI or other measures such as ‘effective number of codons’ and ‘SCUMBLE offsets’. Within overlapping coding regions, one of the 
two coding frames dominates in codon usage bias according to rCAI. Presumably, rCAI could substitute CAI in diverse applications.
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Introduction
It has long been known that synonymous codons are 
used with unequal frequencies in many organisms.1 
Such bias can be explained by several possible causes: 
heterogeneity of nucleotide base composition,2 asym-
metric mutation rates in the leading and lagging strands 
of DNA replication,3,4 transcription effectiveness,5,6 
protein hydropathy,7 and selection pressure for opti-
mizing translational efficiency.8 Although the major 
source of bias differs from species to species, the 
phenomenon of codon usage bias is universal across 
diverse taxa.9–13 Codon usage bias is considered 
important in the study of molecular evolution14 and 
expression of exogenous protein.15,16

Since Ikemura proposed a measure of codon usage 
bias, ‘frequency of optimal codons’ (fop), associated 
with tRNA abundance,17 a vast number of different 
codon bias measures18–25 have been developed, indi-
cating the biological relevance of codon bias. Among 
them, ‘codon adaptation index’ (CAI)18 is one of the 
most widely used. CAI was originally proposed to 
provide a normalized estimate that can be used across 
genes and species, ranging from 0 to 1. The bound-
ary values refer to the cases in which only the most 
frequent codons (CAI = 1) or only the least frequent 
codons (CAI = 0) are used within a gene.

CAI has been used as a simple and effective mea-
sure of the overall synonymous codon usage bias of 
a gene. Highly expressed genes, including ribosomal 
proteins and transcription and translation factors, 
tend to have high CAI.26,27 CAI has been used exten-
sively in diverse biological research: for measuring 
translation efficiency and predicting cellular protein 
levels,28,29 for verifying high-throughput expression 
quantification techniques30,31 and for optimizing DNA 
vaccines.32

CAI of a gene is computed as the geometric mean 
of the relative adaptiveness (w) of all the codons in the 
gene.18 The relative adaptiveness wj for codon of kind 
j that codes for amino acid i is defined as below:

wj = Xij/Ximax,

where Xij is the number of occurrences of codon j in 
the reference set of highly expressed genes and Ximax 
is the maximum Xij for amino acid i. Practically in 
computer calculation, CAI is computed as follows:

CAI ln ( )=
=

∑exp ,1
1L

wc k
k

L

where L is the number of codons in the gene and wc(k) 
is the w value for the k-th codon in the gene.

Intragenic variation of synonymous codon usage 
bias has been documented.33 Some software programs 
provide an option of displaying local CAI values along 
a gene.34,35 However, we observe that local CAI values 
are relatively noisy and that CAI still has a room for 
improvement in close examination of short regions. 
Motivated by this limitation, we propose a modified 
version of CAI that can apparently capture local sig-
nals more sensitively and produce less noise when 
applied to regions expecting little or no codon bias.

Algorithms and Datasets
Relative CAI
The ‘relative codon adaptation index’ (rCAI) is cal-
culated from the LNWD table, which is defined as 
below:

LNWDi = ln w1,i − (ln w2,i + ln w3,i)/2,

for codon of kind i, where w1,i is identical to wi defined 
in the original CAI paper.18 w2,i and w3,i are equivalent 
to w1,i, except that they are trained from the phases 
+1 and +2 of the identical reference set composed of 
highly expressed genes.

rCAI is computed as below:

rCAI =
=

∑exp ( )
1

1L
LNWDc k

k

L

where L is the number of codons in the gene and 
LNWDc(k) is the LNWD value for the k-th codon 
in the gene. Based on our notation, CAI can be 
expressed as:

CAI 1, ( )=
=

∑exp 1
1L
ln w c k

k

L

Compiling protein coding sequences
In this study, we restricted our scope within prokary-
otes. Genomic sequences (.fna) and gene locations 
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(.gff) obtained from the NCBI ftp site were used to 
extract protein coding sequences for Escherichia 
coli K12 M1655 (NC_000913) and Lactococcus lac-
tis ssp. lactis IL1403 (NC_002662). A set of highly 
expressed genes predicted iteratively by Ramazzotti 
et al34 were used to train the LNWD table for each of 
the two species mentioned above. We first checked 
that the positions listed in their results matched with 
the coding positions we compiled from the .gff files 
and used the corresponding extracted sequences to 
compute lnw and LNWD. The same reference set was 
used in calculation of rCAI and CAI for comparison.

Translation efficiency and protein 
abundance
Dressaire et al quantified absolute protein abundance 
based on the APEX method30 along with mRNA abun-
dance in L. lactis, under four different growth condi-
tions.31 Translation efficiencies could be approximated 
by dividing protein abundance by mRNA abundance, 
although they would be compounded by differential 
protein degradation. Using these data sets, we were 
able to obtain translation efficiencies for 171 L. lactis 
genes.

For E. coli genes, the APEX-based protein profil-
ing data were provided by Lu et al30 but the mRNA 
abundance levels were not. Thus, translation effi-
ciency data could not be obtained for E. coli genes.

Correlation analysis
For testing correlation between rCAI and CAI, all 
genes annotated in the NCBI files were used (4379 
for E. coli and 2321 for L. lactis). For testing cor-
relation of rCAI or CAI with translation efficiency 
or protein abundance in L. lactis, the 171  L. lactis 
genes included in the Dressaire et al dataset31 and the 
NCBI annotation were used. Correlation of rCAI or 
CAI with protein abundance in E. coli was analyzed 
similarly using the Lu et al dataset of 397 genes.30 In 
estimation of correlation, log10 values of the transla-
tion efficiency and protein abundance were used. All 
statistical analyses were performed using Origin 7.5.

Comparison of rCAI and CAI  
on a genomic region
For comparison of individual genomic locations, 
we particularly selected 9 highly expressed L. lactis 

genes. We made sure that these genes were not 
part of the reference set, to avoid self-training arti-
fact. Local rCAI and CAI were computed along 
the genomic regions containing these genes, using 
a sliding window of 25 codons at step size of 1 
codon.

According to the original paper,18 the number (Xij) 
of any codon absent in the reference set was set to 0.5. 
We followed this in our computations of rCAI and 
CAI. Furthermore, to calculate the length of a gene 
(L), codons ATG and TGG were excluded for CAI, 
according to the original paper,18 but not for rCAI. 
In the sliding-window approach, we did not exclude 
these codons from the length of window in calcula-
tions of either rCAI or CAI.

Gene-wise signal-to-noise ratio (SNR)
We measured SNR for rCAI and CAI for each gene in 
L. lactis and E. coli, assuming that the two noncoding 
frames represent noise. The median of local rCAI 
or CAI values within all 25-codon sliding windows 
in a coding frame was taken as signal intensity. The 
pooled median from the two noncoding frames was 
used as noise intensity. SNR was obtained by divid-
ing signal intensity by noise intensity.

Effective number of codons (ENC)
rCAI was compared with ENC,19 another widely 
used measure of codon usage bias, in terms of cor-
relations with translation efficiency and protein 
abundance. Proteins of less than 100 amino acids 
were excluded from analysis, because their ENC 
was known to be inaccurate.19 ENC was comput-
able only for 170 L. lactis and 395 E. coli genes. A 
modified version of ENC, Nc**,20 was also imple-
mented and compared with rCAI. Nc** was com-
putable only for 84 L. lactis and 320 E. coli genes, 
because it requires the presence of every amino acid 
in a protein.

Scumble
The degree of codon bias affected by translation effi-
ciency or gene expression level was estimated using 
the SCUMBLE (synonymous codon usage bias max-
imum likelihood estimation) method developed by 
Kloster and Tang.25 A four-trend model was used, as 
suggested by the developers, for correlation analysis 
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using 165 L. lactis and 367 E. coli genes. By default, 
the SCUMBLE program removes genes shorter than 
100 codons and further excludes those that cannot be 
explained by the predicted model.

Application of rCAI on overlapping genes
Overlapping gene pairs of histidine kinase and 
response regulator have been compiled for over 
200 bacteria and studied extensively by Cock and 
Whitworth.36 They observed that the property of an 
overlapping region was more similar to the upstream 
gene than its downstream counterpart, and proposed 
a scenario where an overlapping downstream gene 
has evolved by extending its 5’ end into its upstream 
neighbor. From their collection, we chose a Cau-
lobacter crescentus gene pair whose overlap was long 

enough to apply 25-codon windows. The sequence 
and annotation data (NC_002696) and reference set 
were obtained as in E. coli and L. lactis.

Results and Discussion
Correlation of rCAI with translation 
efficiency and protein abundance
In order to assess the qualification of rCAI as a mea-
sure of codon usage bias, we looked at the correla-
tion between rCAI and translation efficiency, a direct 
effect of tRNA abundance.37 For 171  L. lactis pro-
teins, rCAI had better correlations with translation 
efficiency than CAI under all four growth condi-
tions tested (Fig.  1A). For example, the correlation 
coefficients were estimated to be r = 0.675 for rCAI 
and r = 0.659 for CAI, using the highest growth rate 

Figure 1. Comparison between rCAI and CAI with respect to correlation with translation efficiency. Pearson correlation coefficients (r) of gene-wise rCAI 
(asterisk) or CAI (square) were calculated with log10 of translation efficiency A) or with log10 of protein abundance B) obtained for 171 L. lactis genes under 
four separate growth conditions.31

0.68

0.66

0.64

0.62

0.60

0.58

0.56

0.68

0.66

rCAI

CAI rCAI

CAI

0.64

0.62

0.60

0.58

0.56

0.09 0.24 0.47
Growth rate

A B
r 

va
lu

e

r 
va

lu
e

0.88 0.09 0.24 0.47
Growth rate

0.88

Figure 2. Genome-wide correlation between rCAI and CAI. Gene-wise rCAI and CAI values were calculated for all 2321 L. lactis A) or 4379 E. coli 
B) annotated genes. Pearson correlation coefficient (r) between rCAI and CAI values was 0.96 in both L. lactis and E. coli.

7

6

4

5

3

2

1

0
0.1 0.2 0.3 0.4 0.5

Escherichia coli

CAI

A B

rC
A

I

7

6

4

5

3

2

1

0

rC
A

I

0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

CAI
0.6 0.7 0.8 0.9

Lactococcus lactis

Lee et al

50	 Evolutionary Bioinformatics 2010:6

http://www.la-press.com


dataset. The CAI values we obtained were slightly 
different from those used by Dressaire et  al31 (data 
not shown), presumably because different reference 
sets were used for training.

It has been known that gene expressivity, or pro-
tein abundance is also correlated with codon usage 
bias.27 We observed that the correlation of rCAI with 
protein abundance was at a comparable level with 
that of CAI in L. lactis (Fig. 1B). L. lactis has been 
reported to exhibit relatively high codon usage bias 
among bacteria (strength of selected codon usage bias 
S = 2.288),8 which supports the choice of this organ-
ism for assessment of rCAI.

For E. coli, we could not find a set of protein and 
mRNA abundance data measured under the same 

experimental conditions. Therefore, we could not 
obtain translation efficiency data for E. coli genes to 
estimate correlation with rCAI or CAI. Using just the 
protein profiling data from Lu et al,30 however, corre-
lation with protein abundance turned out to be similar 
between rCAI (r = 0.557) and CAI (r = 0.572). The 
strength of selected codon usage bias of E. coli K12 
was S = 1.488.8

Whereas CAI is set to range from 0 to 1, rCAI 
ranges from 0 to an upper limit, which corresponds 
to an imaginary gene consisting only of the max-
imum-LNWD codons (Fig. 2). Nevertheless, rCAI 
and CAI were highly correlated with each other 
(r  =  0.96) in both L. lactis (Fig.  2A) and E. coli 
(Fig. 2B).

Figure 3. Signal-to-noise ratio of rCAI and CAI on coding regions. Distribution of local rCAI A) and CAI B) values on an L. lactis gene, rplJ. Phase 1 
matches the coding frame. For phases 2 and 3, rCAI and CAI were calculated on triplets beginning at the +1 nucleotide and +2 nucleotide of the coding 
frame, respectively. The rplJ gene is shown in full length and starts at position 1 of the x axis.
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Distribution of rCAI and CAI  
on a genomic region
Figures 3A and 3B show local rCAI and CAI distri-
butions, respectively drawn on the three sense phases 
of L. lactis rplJ gene, where phase 1 corresponds to 
the coding frame. rplJ is a highly expressed ribo-
somal protein gene but was not part of the refer-
ence set prepared by Ramazzotti et al.34 The other 8 
highly expressed genes we selected showed similar 
patterns (data not shown). As seen in Figure 3, rCAI 
showed more consistently lower values than CAI 
when applied to noncoding frames. This indicates 
that rCAI may pick up less false positives, when lit-
tle or no codon usage bias is expected. In order to 
assess whether this trend is systematic, we measured 
SNR for each gene, assuming that the two noncoding 
frames represent noise. Figure 4 shows SNR values 

of rCAI and CAI of all L. lactis (Fig. 4A) and E. coli 
(Fig.  4B) genes, in the order of CAI SNR ranking. 
rCAI exhibits systematically higher SNR than CAI in 
these two species.

Application of rCAI on overlapping genes
It would be interesting to see the codon usage bias 
pattern on the regions where two or more genes over-
lap in different frames. Cock and Whitworth36 stud-
ied mutability and codon frequencies within the two 
overlapping genes for sensor kinase and response 
regulator constituting the two-component systems in 
over 200 bacteria and documented that an overlapping 
region tends to be more similar to the upstream gene 
than downstream gene. We selected one of sufficiently 
long overlapping regions from their compilation to 
examine rCAI pattern. The region was overlapped by 

Figure 5. rCAI distribution across the overlapping region of two C. crescentus genes, kdpD and kdpE. Only parts of the two genes are shown with the 
overlapping region zoomed in. Phase 1 matches the coding frame of the upstream gene kdpD, and phases 2 and 3 start at the +1 and +2 nucleotides of 
phase 1, respectively. The coding frame of kdpE lies in phase 2. rCAI computed on phase 1 dominates over that of phase 2 in the region of overlap.
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two C. crescentus genes, kdpD for histidine kinase 
and kdpE for response regulator (Fig. 5). We checked 
that the strength of selected codon usage bias for 
C. crescentus was moderately high (S =  1.152).8As 
shown in the rCAI plot of Figure  5, the upstream 
kdpD gene was clearly dominant over the down-
stream kdpE gene.

We applied rCAI on another overlapping gene pair, 
Rz and Rz1, in an E. coli bacteriophage λ (Fig. 6). It 
has been proposed that not all but many phages lack-
ing intrinsic tRNAs, including λ, adapt to the codon 
usage bias of their host.38,39 Therefore, we expected 
some degree of rCAI and CAI signals over λ phage 
genes, even though the lnw and LNWD tables were 
trained from the E. coli reference set. As seen in 
Figure 6, the upstream of the two frames seemed to 
dominate within the overlapping region, which in this 
case covered the entire Rz1 gene. Accordingly, rCAI 
patterns of the overlapping coding regions evidently 
support for the upstream gene dominance proposed 
by Cock and Whitworth.36

Resistance to frameshift
It has been suggested that one of the selective con-
straints that affect formation of codon usage bias is 
resistance to frameshift caused by either mutation 
or mistranslation.40 In other words, codon usage is 
adapted in a way that minimizes optimal codon usage 
in frame-shifted products. This is consistent with our 
observation that subtracting the background of shifted 
frames makes codon bias signals become clearer hav-
ing higher SNR.

Simplicity
Although rCAI uses a background term, which is not 
used for CAI, rCAI does not require an additional 
training set, such as genes of low expression levels 
or randomly shuffled sequences. Given the refer-
ence set of genes used to calculate CAI, rCAI can be 
computed simply by using two additional phases. The 
procedure of computing LNWD involves computing 
lnw, as in the calculation of CAI, except that it is done 
on three different phases of the reference set.

Comparison of rCAI with other codon 
usage bias estimates
‘Effective number of codons’ (ENC) was proposed by 
Wright to describe codon bias without the reference 

of highly expressed genes.19 ENC ranges from 20 
(maximum bias) to 61 (no bias). In this study, ENC 
was computed for the L. lactis and E. coli genes, and 
the correlations of ENC were analyzed with transla-
tion efficiency and protein abundance. For example, 
ENC correlation with L. lactis translation efficiency 
was r = −0.338 for the highest growth rate dataset, 
being much worse than the rCAI (r = 0.675) or CAI 
(r = 0.659) correlation. Furthermore, a previous study 
also showed that CAI performs better than ENC in 
predicting mRNA expression level in E. coli.24 In our 
analysis, ENC correlation with E. coli protein abun-
dance was r = −0.417, which was also worse than the 
rCAI (r = 0.557) or CAI (r = 0.572) correlation.

As modified versions of ENC, Nc* and Nc** were 
sequentially introduced by Fuglsang.20,22 The more 
recent Nc** was computed in this study. For the high-
est growth rate dataset of L. lactis, Nc** correlation 
with translation efficiency was r = −0.576, which was 
worse than the rCAI (r = 0.675) or CAI (r = 0.659) cor-
relation. Likewise, Nc** correlation with E. coli pro-
tein abundance was −0.461, being further worse than 
the rCAI (r = 0.557) or CAI (r = 0.572) correlation. 
Accordingly, rCAI and CAI are better correlated with 
translation efficiency, protein abundance, or gene 
expressivity than ENC or NC**.

‘Frequency of optimal codons’ (Fop) suggested 
by Ikemura is the fraction of optimal codons (the 
most preferred by tRNA) to synonymous codons in 
a gene.17 Fop may serve as the most direct measure of 
translation-related codon usage bias. Unfortunately, 
the use of Fop is limited due to lack of information 
on tRNA abundance in some organisms. According 
to the analysis by Goetz and Fuglsang, Fop is less cor-
related with expressivity than CAI,24 and hence pre-
sumably than rCAI.

Discernment of codon bias sources
‘Correspondence analysis’ (CA) powerfully discerns 
the major source of codon usage bias in a particular 
genome, and several versions of CA such as CA-AF, 
CA-RF, CA-RSCU and within-group CA (WCA) 
have been proposed.23 CA extracts the most influential 
‘axes,’ or directions from a multi-dimensional vector 
space, i.e. a contingency matrix of genes (in rows) 
and codons (in columns). By inspecting what CA axis 
separates genes, one can identify the major source 
of codon bias in the species. For example, highly 
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expressed E. coli genes are separated by the CA axis 
correlated with gene expressivity, which is the major 
source of codon bias in E. coli.41 In contrast, replica-
tion selection is the major source for codon bias in 
Borrelia burgdorferi, and the genes are separated into 
those on the leading strand and those on the lagging 
strand.41

Recently, a probabilistic model-based method, 
called SCUMBLE, was proposed to estimate the 
degrees of contribution by different sources (‘trends’) 
and their effects on a gene (‘offsets’ or βi).

25 Where 
translational selection is the major source of bias, for 
example in Saccharomyces cerevisiae, the first off-
set (β1, or the offset for the highest-variance trend) is 
highly correlated with gene expressivity. In contrast, 
the expressivity-correlated trend is not the major 
source of bias in Helicobacter pylori, as it is captured 
by β3 (the offset for the third highest-variance trend) 
rather than β1.

When SCUMBLE was applied on the L. lactis 
and E. coli datasets in this study, β1 showed the high-
est absolute correlation coefficient with both protein 
abundance and translation efficiency, which are con-
sequently presumed to be the major source of codon 
bias in these two organisms. On the highest growth 
rate dataset of L. lactis, the correlation of rCAI with 
translation efficiency or protein abundance (r = 0.675 
and 0.658, respectively) was much better than that of 
β1 (r  =  −0.493 and −0.583, respectively) computed 
using SCUMBLE in a four-trend model. On the 
E. coli dataset, β1 showed a marginally better correla-
tion with protein abundance (r = −0.592), compared 
with rCAI (r = 0.557) or CAI (r = 0.572).

Although CA and SCUMBLE are useful in dis-
cerning the sources of codon usage bias, it is not the 
most ideal for quantifying an individual kind(s) of 
codon bias. Firstly, which CA axis or trend represents 
a specific source is generally unknown and differs 
from species to species. Secondly, an axis or trend 
may possibly represent a mixed or partial effect. For 
example, in both L. lactis and E. coli, protein abun-
dance was correlated with not only β1 (r  =  −0.583 
and −0.592, respectively) but also β4 (r  =  −0.469 
and −0.475, respectively), raising need for careful 
interpretation. We suggest that rCAI or CAI can com-
plement such weakness of the CA- or SCUMBLE-
based analysis.

Conclusions
CAI measures absolute codon usage bias by quantify-
ing the similarity in the synonymous codon frequency 
between a given gene and a set of the most frequently 
translated genes. In contrast, the relative CAI, or 
rCAI, uses not only the most optimal frames but also 
potentially the least optimal frames, which are likely 
to occur in the noncoding frames of the maximally 
translated genes. Computationally, rCAI is nearly as 
easy to calculate as CAI, but shows higher discrimi-
nating power. As we demonstrated a usage of rCAI in 
codon bias analysis of overlapping genes, rCAI may 
provide a substitute for CAI in various applications.
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