Unconventional methods for fabricating nanostructures toward high-fidelity sensors

Cited 23 time in webofscience Cited 0 time in scopus
  • Hit : 623
  • Download : 1251
DC FieldValueLanguage
dc.contributor.authorLee, Su-Yeonko
dc.contributor.authorJeon, Hwan-Chulko
dc.contributor.authorYang, Seung-Manko
dc.date.accessioned2013-03-11T08:10:16Z-
dc.date.available2013-03-11T08:10:16Z-
dc.date.created2012-04-30-
dc.date.created2012-04-30-
dc.date.issued2012-02-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY, v.22, no.13, pp.5900 - 5913-
dc.identifier.issn0959-9428-
dc.identifier.urihttp://hdl.handle.net/10203/98739-
dc.description.abstractPlasmonic materials fabricated from precisely controlled metal nanostructures provide promising platforms for developing high-sensitivity sensing devices, such as pH sensors, organic vapor sensors, and other chemical sensors. Over the past several decades, a number of unconventional methods for preparing localized surface plasmon resonance (LSPR)-based metal nanostructures have been developed in an effort to design high-fidelity sensors. Recent advances in plasmon-based optical sensors based on plasmonic nanostructures have made remarkable progress in overcoming the constraints of conventional optical sensors in terms of providing tunability, improved sensitivity, and good fidelity. In this review, we highlight the current state of the art in this field with an emphasis on the fabrication of plasmonic materials using unconventional methods and their demonstrated applications. We describe the remarkable achievements that have improved the performance of sensors for certain sensing systems. Finally, we present a perspective on the future development of LSPR sensors, including a discussion of the advances needed to elevate sensor performance to a level required for practical devices in the laboratory and in medical diagnostics.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectSURFACE-PLASMON RESONANCE-
dc.subjectENHANCED RAMAN-SCATTERING-
dc.subjectSUBWAVELENGTH HOLE ARRAYS-
dc.subjectNANOSPHERE LITHOGRAPHY-
dc.subjectSOLAR-CELLS-
dc.subjectSOFT-LITHOGRAPHY-
dc.subjectINTERFERENCE LITHOGRAPHY-
dc.subjectSENSING CHARACTERISTICS-
dc.subjectGOLD NANOPARTICLES-
dc.subjectNANOMETRIC HOLES-
dc.titleUnconventional methods for fabricating nanostructures toward high-fidelity sensors-
dc.typeArticle-
dc.identifier.wosid000301195300002-
dc.identifier.scopusid2-s2.0-84863296135-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue13-
dc.citation.beginningpage5900-
dc.citation.endingpage5913-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY-
dc.identifier.doi10.1039/c2jm16568f-
dc.contributor.localauthorYang, Seung-Man-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSURFACE-PLASMON RESONANCE-
dc.subject.keywordPlusENHANCED RAMAN-SCATTERING-
dc.subject.keywordPlusSUBWAVELENGTH HOLE ARRAYS-
dc.subject.keywordPlusNANOSPHERE LITHOGRAPHY-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusSOFT-LITHOGRAPHY-
dc.subject.keywordPlusINTERFERENCE LITHOGRAPHY-
dc.subject.keywordPlusSENSING CHARACTERISTICS-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusNANOMETRIC HOLES-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0