Selected SALM (Synaptic Adhesion-Like Molecule) Family Proteins Regulate Synapse Formation

Cited 69 time in webofscience Cited 0 time in scopus
  • Hit : 365
  • Download : 0
Synaptic cell adhesion molecules regulate various steps of synapse formation. Despite the great diversity of neuronal synapses, relatively few adhesion molecules with synaptogenic activity have been identified. Synaptic adhesion-like molecules (SALMs) are members of a family of cell adhesion molecules known to regulate neurite outgrowth and synapse maturation; however, the role of SALMs in synapse formation remains unknown. We found that expression of the SALM family proteins SALM3 and SALM5 in nonneural and neural cells induces both excitatory and inhibitory presynaptic differentiation in contacting axons. SALM3 and SALM5 proteins are enriched in synaptic fractions, and form strong (SALM3) or weak (SALM5) complexes with postsynaptic density-95 (PSD-95), an abundant postsynaptic scaffolding protein at excitatory synapses. Aggregation of SALM3, but not SALM5, on dendritic surfaces induces clustering of PSD-95. Knockdown of SALM5 reduces the number and function of excitatory and inhibitory synapses. These results suggest that selected SALM family proteins regulate synapse formation, and that SALM3 and SALM5 may promote synapse formation through distinct mechanisms.
Publisher
SOC NEUROSCIENCE
Issue Date
2010-04
Language
English
Article Type
Article
Keywords

CELL-ADHESION; SYNAPTOGENIC PROTEINS; EXCITATORY SYNAPSES; NMDA RECEPTOR; NEUROLIGINS; NEUREXINS; DIFFERENTIATION; ORGANIZERS; EXPRESSION; INTERACTS

Citation

JOURNAL OF NEUROSCIENCE, v.30, no.16, pp.5559 - 5568

ISSN
0270-6474
DOI
10.1523/JNEUROSCI.4839-09.2010
URI
http://hdl.handle.net/10203/97482
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 69 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0