Modeling of NH3-NO-SCR reaction over CuO/gamma-Al2O3 catalyst in a bubbling fluidized bed reactor using artificial intelligence techniques

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 590
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorIrfan, Muhammad Faisalko
dc.contributor.authorMjalli, Farouq S.ko
dc.contributor.authorKim, Sang Doneko
dc.date.accessioned2013-03-09T13:13:22Z-
dc.date.available2013-03-09T13:13:22Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2012-03-
dc.identifier.citationFUEL, v.93, no.1, pp.245 - 251-
dc.identifier.issn0016-2361-
dc.identifier.urihttp://hdl.handle.net/10203/96436-
dc.description.abstractComparative study of the artificial neural network and mechanistic model was carried out for NO removal in a bubbling fluidized bed reactor. The effects of temperature, superficial gas velocity and ammonia/nitric oxide ratio on the NO removal efficiency were determined and their optimum conditions were estimated by the experimental study, the artificial neural network and mechanistic models as well. The optimum values of ammonia/nitric oxide ratio, temperature and superficial gas velocity for the maximum NO removal efficiency were found to be 1.5, 300 degrees C and 0.098 m/s, respectively. A mechanistic model was implemented in our previous study [Muhammad F. Irfan, Sang Done Kim and Muhammad R. Usman, 2009] and it was found that this model fitted well only at specific condition i.e. maximum conversion temperature (300 degrees C). However, it failed to perfectly match with rest of the experimental data points at other temperatures and parametric conditions as well. To improve this, an artificial neural network modeling strategy was applied and its predictions were evaluated which were favorably matched with the experimental data rather than the mechanistic model. (C) 2011 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectTITANIA-PILLARED MONTMORILLONITE-
dc.subjectNITRIC-OXIDE-
dc.subjectSELECTIVE OXIDATION-
dc.subjectNEURAL-NETWORKS-
dc.subjectNO OXIDATION-
dc.subjectREDUCTION-
dc.subjectNH3-
dc.subjectAMMONIA-
dc.subjectALUMINA-
dc.subjectSCR-
dc.titleModeling of NH3-NO-SCR reaction over CuO/gamma-Al2O3 catalyst in a bubbling fluidized bed reactor using artificial intelligence techniques-
dc.typeArticle-
dc.identifier.wosid000299541400030-
dc.identifier.scopusid2-s2.0-84855915874-
dc.type.rimsART-
dc.citation.volume93-
dc.citation.issue1-
dc.citation.beginningpage245-
dc.citation.endingpage251-
dc.citation.publicationnameFUEL-
dc.identifier.doi10.1016/j.fuel.2011.09.043-
dc.contributor.localauthorKim, Sang Done-
dc.contributor.nonIdAuthorIrfan, Muhammad Faisal-
dc.contributor.nonIdAuthorMjalli, Farouq S.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSCR-
dc.subject.keywordAuthorNO removal-
dc.subject.keywordAuthorANN-
dc.subject.keywordAuthorMechanistic model-
dc.subject.keywordPlusTITANIA-PILLARED MONTMORILLONITE-
dc.subject.keywordPlusNITRIC-OXIDE-
dc.subject.keywordPlusSELECTIVE OXIDATION-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusNO OXIDATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusNH3-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusALUMINA-
dc.subject.keywordPlusSCR-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0