Three-dimensional object recognition using x-ray imaging

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 758
  • Download : 1279
This paper presents a distortion-tolerant 3-D volume object recognition technique. Volumetric information on 3-D objects is reconstructed by x-ray imaging. We introduce 3-D feature extraction, volume matching, and statistical significance testing for the 3-D object recognition. The 3D Gabor-based wavelets extract salient features from 3-D volume objects and represent them in the 3-D spatial-frequency domain. Gabor coefficients constitute feature vectors that are invariant to translation, rotation, and distortion. Distortion-tolerant volume matching is performed by a modified 3-D dynamic link association (DLA). The DLA is composed of two stages: rigid motion of a 3-D graph, and elastic deformation of the graph. Our 3-D DLA presents a simple and straightforward solution for a 3-D volume matching task. Finally, significance testing decides the class of input objects in a statistical manner. Experiment and simulation results are presented for five classes of volume objects. We test three classes of synthetic data (pyramid, hemisphere, and cone) and two classes of experimental data (short screw and long screw). The recognition performance is analyzed in terms of the mean absolute error between references and input volume objects. We also confirm the robustness of the recognition algorithm by varying system parameters. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Publisher
Spie-Soc Photo-Optical Instrumentation Engineers
Issue Date
2005-02
Language
English
Article Type
Article
Keywords

DIGITAL HOLOGRAPHY; FEATURE-EXTRACTION; CLASSIFICATION; REPRESENTATION; REGISTRATION; CORRELATOR; FREQUENCY; EFFICIENT; ROBUST

Citation

OPTICAL ENGINEERING, v.44, no.2, pp.27201 - 27224

ISSN
0091-3286
DOI
10.1117/1.1844532
URI
http://hdl.handle.net/10203/960
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0