Optimization of one-pass transuranic deep burn in a modular helium reactor

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 358
  • Download : 0
An optimization study of a single-pass transuranic (TRU) deep burn (DB) has been performed for a block-type modular helium reactor (MHR) proposed by General Atomics. A high-burnup TRU feed vector from light water reactors is considered: 50 GWd/tU burnup with 5-yr cooling. For three-dimensional equilibrium cores, the performance analysis is done by using McCARD, a continuous-energy Monte Carlo depletion code. The core optimization is performed from the viewpoints of the core configuration, fuel management, tristructural-isotropic (TRISO) fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated it? terms of the neutron economy A conventional radial shuffling scheme of fuel blocks is compared with an axial-only block-shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of the TRISO fuel is evaluated, and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of the TRISO particles. A higher graphite density, is also evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by a zoning of the packing fraction of the TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a two- or three-batch fuel-reloading scheme, at the expense of only a marginal decrease of the TRU discharge burnup. Finally, preliminary safety characteristics of a DB-MHR core have been investigated in terms of the temperature coefficients and effective delayed neutron fraction. It has been found that, depending on the fuel management scheme and fuel specifications, the TRU burnup in an optimized DB-MHR core can be well over 60% in a single-pass irradiation campaign.
Publisher
AMER NUCLEAR SOC
Issue Date
2008-09
Language
English
Article Type
Article
Keywords

MONTE-CARLO; FUEL-MANAGEMENT; NUCLEAR-WASTE; TRANSMUTATION; INCINERATION; PLUTONIUM; CODE; MCB

Citation

NUCLEAR SCIENCE AND ENGINEERING, v.160, no.1, pp.59 - 74

ISSN
0029-5639
URI
http://hdl.handle.net/10203/92780
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0