Density-functional calculations of defect formation energies using the supercell method: Brillouin-zone sampling

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 272
  • Download : 0
Using the DFT supercell method, the BZ sampling error in the formation energy and atomic structure are investigated for vacancy and interstitial defects in diamond and silicon. We find that the k-point sampling errors in the total energy vary considerably depending on the charge state and defect type without systematic cancellation, even for the same size of supercell. The error in the total energy increases with decreasing electronic perturbation of the defect system relative to the perfect bulk; this effect originates in the localization of electronic states due to the symmetry reduction induced by the presence of a defect. The error in the total energy is directly transferred to the formation energy, and consequently changes the thermodynamic stability of charge states and shifts the ionization levels. In addition, in force calculations and atomic structure determinations, the k-point sampling error is observed to increase as the charge becomes more negative. The Gamma-point sampling results in erroneously large relaxation of the four atoms surrounding a vacancy in diamond. We suggest that stronger repulsions between electrons occupying degenerate defect levels at Gamma-point compared to those occupying split energy levels at other k points induces larger atomic movements.
Publisher
AMERICAN PHYSICAL SOC
Issue Date
2005-06
Language
English
Article Type
Article
Keywords

AB-INITIO CALCULATIONS; SPECIAL POINTS; DIAMOND; SILICON; DIFFUSION; VACANCY; SYSTEMS; SI; SEMICONDUCTORS; APPROXIMATION

Citation

PHYSICAL REVIEW B, v.71, no.24

ISSN
1098-0121
DOI
10.1103/PhysRevB.71.245204
URI
http://hdl.handle.net/10203/91031
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0