Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles

Cited 153 time in webofscience Cited 0 time in scopus
  • Hit : 531
  • Download : 0
A facile synthesis of flower-shaped porous Au-Pd alloy nanoparticles with ascorbic acid as a reductant and PVP as a stabilizing agent is presented. The alloy nanoparticles were prepared from the aqueous solutions of HAuCl4/K2PdCl4 mixtures in molar ratios of 3: 1, 1: 1, and 1:3. The size, structure, optical properties, and composition distribution of the synthesized Au-Pd alloy nanoparticles were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV-vis spectroscopy, and X-ray diffraction. The experimental results for the bimetallic systems and the physical mixtures of individual monometallic nanoparticles revealed that unstable small nanoparticles aggregate into the three-dimensional flower-shaped nanoparticles and the prepared nanoparticles are Au-Pd alloys. The surfaces of Au-Pd alloy nanoparticles were characterized by cyclic voltammetry measurement in 0.1 M HClO4 and surface-enhanced Raman scattering spectra of 1,4-phenylene diisocyanide adsorbed thereon. All alloy nanoparticles have a Pd-enriched surface.
Publisher
AMER CHEMICAL SOC
Issue Date
2008-05
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY C, v.112, no.17, pp.6717 - 6722

ISSN
1932-7447
DOI
10.1021/jp710933d
URI
http://hdl.handle.net/10203/88554
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 153 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0