Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species

Cited 62 time in webofscience Cited 0 time in scopus
  • Hit : 339
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee K.ko
dc.contributor.authorChuang H.-Y.ko
dc.contributor.authorBeyer A.ko
dc.contributor.authorSung M.-K.ko
dc.contributor.authorHuh W.-K.ko
dc.contributor.authorLee B.ko
dc.contributor.authorIdeker T.ko
dc.date.accessioned2013-03-06T15:55:26Z-
dc.date.available2013-03-06T15:55:26Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2008-
dc.identifier.citationNUCLEIC ACIDS RESEARCH, v.36, no.20-
dc.identifier.issn0305-1048-
dc.identifier.urihttp://hdl.handle.net/10203/87502-
dc.description.abstractThe function of a protein is intimately tied to its subcellular localization. Although localizations have been measured for many yeast proteins through systematic GFP fusions, similar studies in other branches of life are still forthcoming. In the interim, various machine-learning methods have been proposed to predict localization using physical characteristics of a protein, such as amino acid content, hydrophobicity, side-chain mass and domain composition. However, there has been comparatively little work on predicting localization using protein networks. Here, we predict protein localizations by integrating an extensive set of protein physical characteristics over a protein's extended protein-protein interaction neighborhood, using a classification framework called 'Divide and Conquer k-Nearest Neighbors' (DC-kNN). These predictions achieve significantly higher accuracy than two well-known methods for predicting protein localization in yeast. Using new GFP imaging experiments, we show that the network-based approach can extend and revise previous annotations made from high-throughput studies. Finally, we show that our approach remains highly predictive in higher eukaryotes such as fly and human, in which most localizations are unknown and the protein network coverage is less substantial.-
dc.languageEnglish-
dc.publisherOXFORD UNIV PRESS-
dc.subjectSHOCK TRANSCRIPTION FACTOR-
dc.subjectSACCHAROMYCES-CEREVISIAE-
dc.subjectLOCATION PREDICTION-
dc.subjectEXPRESSION DATA-
dc.subjectGLOBAL ANALYSIS-
dc.subjectBUDDING YEAST-
dc.subjectGENOME-
dc.subjectSEQUENCE-
dc.subjectDATABASE-
dc.subjectPSORT-
dc.titleProtein networks markedly improve prediction of subcellular localization in multiple eukaryotic species-
dc.typeArticle-
dc.identifier.wosid000260977500007-
dc.identifier.scopusid2-s2.0-56649094590-
dc.type.rimsART-
dc.citation.volume36-
dc.citation.issue20-
dc.citation.publicationnameNUCLEIC ACIDS RESEARCH-
dc.identifier.doi10.1093/nar/gkn619-
dc.contributor.localauthorLee K.-
dc.contributor.nonIdAuthorChuang H.-Y.-
dc.contributor.nonIdAuthorBeyer A.-
dc.contributor.nonIdAuthorSung M.-K.-
dc.contributor.nonIdAuthorHuh W.-K.-
dc.contributor.nonIdAuthorLee B.-
dc.contributor.nonIdAuthorIdeker T.-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSHOCK TRANSCRIPTION FACTOR-
dc.subject.keywordPlusSACCHAROMYCES-CEREVISIAE-
dc.subject.keywordPlusLOCATION PREDICTION-
dc.subject.keywordPlusEXPRESSION DATA-
dc.subject.keywordPlusGLOBAL ANALYSIS-
dc.subject.keywordPlusBUDDING YEAST-
dc.subject.keywordPlusGENOME-
dc.subject.keywordPlusSEQUENCE-
dc.subject.keywordPlusDATABASE-
dc.subject.keywordPlusPSORT-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 62 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0