Combining multiple microarray studies and modeling interstudy variation

Cited 323 time in webofscience Cited 0 time in scopus
  • Hit : 451
  • Download : 0
We have established a method for systematic integration of multiple microarray datasets. The method was applied to two different sets of cancer profiling studies. The change of gene expression in cancer was expressed as 'effect size', a standardized index measuring the magnitude of a treatment or covariate effect. The effect sizes were combined to obtain the estimate of the overall mean. The statistical significance was determined by a permutation test extended to multiple datasets. It was shown that the data integration promotes the discovery of small but consistent expression changes with increased sensitivity and reliability. The effect size methods provided the efficient modeling framework for addressing interstudy variation as well. Based on the result of homogeneity tests, a fixed effects model was adopted for one set of datasets that had been created in controlled experimental conditions. By contrast, a random effects model was shown to be appropriate for the other set of datasets that had been published by independent groups. We also developed an alternative modeling procedure based on a Bayesian approach, which would offer flexibility and robustness compared to the classical procedure.
Publisher
OXFORD UNIV PRESS
Issue Date
2003-07
Language
English
Article Type
Article
Citation

BIOINFORMATICS, v.19, no.1, pp.84 - 90

ISSN
1367-4803
URI
http://hdl.handle.net/10203/85961
Appears in Collection
BiS-Journal Papers(저널논문)MSE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 323 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0