Elliptic curve point counting over finite fields with Gaussian normal basis

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 300
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, J.H.ko
dc.contributor.authorPark, J.Y.ko
dc.contributor.authorHahn, Sang-Geunko
dc.date.accessioned2013-03-04T18:34:57Z-
dc.date.available2013-03-04T18:34:57Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2003-01-
dc.identifier.citationPROCEEDINGS OF THE JAPAN ACADEMY SERIES A: MATHEMATICAL SCIENCES, v.79, no.1, pp.5 - 8-
dc.identifier.issn0386-2194-
dc.identifier.urihttp://hdl.handle.net/10203/83650-
dc.description.abstractIn this paper, we present the GNB-aided MSST algorithm for the curves over finite fields that have a Gaussian normal basis of type t less than or equal to 2. It is based on the MSST algorithm proposed by P. Gaudry [3] at ASIACRYPT 2002. For those fields, we combine the lifting phase of the MSST algorithm and the norm computation algorithm in [6]. So the time complexity of the MSST is reduced from O(N2mu+0.5) to O(N2mu+1/(mu+1)) and it runs faster than any other algorithms in our case.-
dc.languageEnglish-
dc.publisherNippon Gakushiin/Japan Academy-
dc.titleElliptic curve point counting over finite fields with Gaussian normal basis-
dc.typeArticle-
dc.identifier.wosid000181062600002-
dc.identifier.scopusid2-s2.0-0037239342-
dc.type.rimsART-
dc.citation.volume79-
dc.citation.issue1-
dc.citation.beginningpage5-
dc.citation.endingpage8-
dc.citation.publicationnamePROCEEDINGS OF THE JAPAN ACADEMY SERIES A: MATHEMATICAL SCIENCES-
dc.contributor.localauthorHahn, Sang-Geun-
dc.contributor.nonIdAuthorPark, J.H.-
dc.contributor.nonIdAuthorPark, J.Y.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorelliptic curve-
dc.subject.keywordAuthororder counting-
dc.subject.keywordAuthorGaussian normal basis-
dc.subject.keywordAuthorfinite field-
dc.subject.keywordAuthorcryptography-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0