인공 신경망을 이용한 플랫 슬래브 주차장 구조물의등가차량하중계수 Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 480
  • Download : 0
이 논문에서는 기존의 보-거더 구조계 주차장 구조물에 대한 차량하중영향 연구를 토대로, 플랫 슬래브 구조계에서 차량하중영향에 대한 연구를 수행하였다. 먼저, 최대부재력을 일으키는 차량하중의 적용을 위해 플랫 슬래브의 주요 설계지점에 대한 영향면을 구성하였으며, 플랫 슬래브의 등가차량하중계수를 인공 신경망기법을 이용하여, 슬래브 두께, 지판 두께, 지판 크기, 슬래브의 단변, 장변 길이 등 주요구조변수로 제시하였다. 사용된 신경망의 훈련은 많은 패턴수를 갖는 비선형 회귀분석에 적합한 Levenberg-Marquardt 알고리즘을 이용하였으며, 해석결과와 인공 신경망의 출력의 비교를 통해 알고리즘의 유효성을 검증하였다. 플랫 슬래브 구조계의 등가차량하중계수를 살펴보면, 보-거더 구조계의 경우와 유사하게 주열대와 중간대의 정모멘트 부재력에서 차량하중에 매우 취약함을 알 수 있었다.
Publisher
한국전산구조공학회
Issue Date
2003-06
Language
Korean
Citation

한국전산구조공학회논문집, v.16, no.2, pp.115 - 124

ISSN
1229-3059
URI
http://hdl.handle.net/10203/81347
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0