Magnetic reconnection induced by Kelvin-Helmholtz instability

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 290
  • Download : 0
MHD simulation study is performed to investigate magnetic reconnection induced by the Kelvin Helmholtz instability in the initially sheared magnetic field geometry as well as in the uniform magnetic field geometry. Slow mode rarefaction structures seen in the uniform field case are not observed in the sheared field case. Dynamo action is less prominent and the conversion of plasma flow energy into the other forms of energy is also smaller in the sheared field case than in the uniform field case. Momentum transport is mostly due to the hydrodynamic stress in the sheared field case, while the electromagnetic stress is dominant in the uniform field case. The long term evolutions are also markedly different in the two cases. In the uniform field geometry, the magnetic field lines twisted due to the Kelvin Helmholtz instability become reconnected and flattened so that they resume the straight held line structure which resembles the initial field geometry. The magnetic field, however, is not uniform with smaller intensity in the central region where the pressure balance is partially maintained by the enhanced thermal pressure. In the initially sheared magnetic field geometry, magnetic reconnection continues to operate until the end of the simulation and the conversion of the flow energy into the thermal energy is still seen.
Publisher
KLUWER ACADEMIC PUBL
Issue Date
1996-02
Language
English
Article Type
Article
Citation

ASTROPHYSICS AND SPACE SCIENCE, v.236, no.2, pp.201 - 214

ISSN
0004-640X
URI
http://hdl.handle.net/10203/76927
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0