VLSI implementation of neural network with on-chip learning capability = 학습능력을 가지는 신경회로망의 VLSI 구현

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 263
  • Download : 0
Although analog circuits provide attractive features in implementing neural network, most analog implementations have been restricted to forward computations only. Since most of computations occur in learning, learning should be incorporated in hardware implementations for truly fast neural hardware. In this thesis, a subthreshold analog circuits for MOS implementation of artificial neural networks is presented with on-chip learning capability. The subthreshold operation provides low power consumption and the chip implements both backpropagation learning and Hebbian learning. All the circuits incorporate modular architecture, and are designed to increase numbers of neurons and layers with pin-to-pin connections of multiple chips. Previous researchers pointed out that backpropagation learning can overcome several nonidealities of analog hardware but offsets still remains to be a problem. In order to know the effect of multiplier offsets on on-chip learning hardware, a systematic offset analysis is done. The offset analysis shows that offsets cause many phenomena such as output static errors, weight-drift, variable errors dependent upon input training patterns, premature output saturation, etc. Simulation results show these phenomena well. Due to the offset analysis a deeper understanding of practical analog on-chip learning hardwares has been obtained. The offset analysis also provide guidelines determining target values and initial weight values to obtain desired outputs. A neuro system consisting of the neuro-chips, personal computer, and an interface control logic is integrated. The fabricated chips are measured and tested in several ways to know their characteristics and learning performances. Some experimental results are compared with the offset analysis, and demonstrate good agreements.
Advisors
Lee, Soo-Youngresearcher이수영researcher
Description
한국과학기술원 : 전기및전자공학과,
Publisher
한국과학기술원
Issue Date
1996
Identifier
108824/325007 / 000925381
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 전기및전자공학과, 1996.8, [ v, 94 p. ]

Keywords

Offset; Analog neuro-chip; VLSI implementation; Neural networks; MLP; 다층구조퍼셉트론; 오프셋; 아날로그 신경회로망 칩; VLSI 구현; 신경회로망

URI
http://hdl.handle.net/10203/36353
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=108824&flag=dissertation
Appears in Collection
EE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0