Ultra-small cobalt nanocrystals embedded in 2D-MoS2 nano-sheets as efficient co-catalyst for solar-driven hydrogen production: Study of evolution rate dependence on cobalt nanocrystal size

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 45
  • Download : 0
2D-MoS2 nanostructures are attractive co-catalysts for photocatalytic hydrogen evolution due to their suitable water reduction potentials and high stability. However, the catalytic activity of MoS2 is greatly limited by the catalytically inert basal planes. Doping of transition-metal ions into MoS2 structure is an effective way to activating the basal planes. To this end, the formation of size-controlled metal nanocrystals with clean surface and mono dispersed nature is a current challenge. Here we utilized pulsed laser ablation in liquid approach to generate high purity size controlled cobalt nanocrystal by adjusting the laser fluences and systematically evaluate the effect of cobalt nanocrystals size and concentration on MoS2 to activate the basal planes. A set of CoMoS2/CdS nanorods with different cobalt size were examined, and an optimal cobalt size of 3.1 nm was obtained. The optimized CdS/Co-MoS2 nanocomposite showed a very high H-2 production rate (275 mmol h(-1) g(-1)) with outstanding stability. To the best of our knowledge, this is the best performance reported for CdS/MoS2 based nanocomposites. The remarkable hydrogen evolution rate and stability may be due to reduced recombination rate and greatly increased density of catalytic active sites which is determined by photoluminescence and impedance spectroscopy. Finally, we believe that the strategies applied in the present study to form robust photocatalysts and its utilization in solar driven hydrogen production would inspire the development of other low-cost photocatalysts for renewable fuel production.
Publisher
ELSEVIER
Issue Date
2019-11
Language
English
Article Type
Article
Citation

APPLIED SURFACE SCIENCE, v.494, pp.239 - 248

ISSN
0169-4332
DOI
10.1016/j.apsusc.2019.07.173
URI
http://hdl.handle.net/10203/318317
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0