Drastic Improvement of 1D-CdS Solar-Driven Photocatalytic Hydrogen Evolution Rate by Integrating with NiFe Layered Double Hydroxide Nanosheets Synthesized by Liquid-Phase Pulsed-Laser Ablation

Cited 46 time in webofscience Cited 0 time in scopus
  • Hit : 26
  • Download : 0
Solar-driven semiconductor-based molecular hydrogen production is an ideal protocol for converting abundant solar energy to green fuel. However, this process suffers from costly semiconductor nanostructures, low efficiency, and poor stability. Here, we design a noble-metal free photocatalyst, CdS-NiFe layered double hydroxide (LDH) nanocomposite, which is synthesized using the liquid-phase pulsed-laser ablation and hydrothermal method. The nanocomposite has a unique morphology of 2D-NiFe LDH nanosheets on 1D-CdS nanorods. The interfacial contact of heterostructures allows the efficient carrier transport and migration due to the appropriate potentials, which greatly reduce the recombination of carriers. It also provides a significant number of catalytically active sites for the hydrogen evolution reaction due to its thin and flexible nature and high specific surface area. The CdS/NiFe nanocomposite exhibits a hydrogen evolution rate of 72 mmol g(-1) h(-1), which is higher than reported nanocomposites of CdS-based cocatalyst nanostructures. We expect that the demonstrated method to form noble-metal-free CdS-based cocatalyst nanostructures and the utilization in photocatalytic hydrogen evolution reactions provide novel insights into developing cost-effective photocatalysts for hydrogen production.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-12
Language
English
Article Type
Article
Citation

ACS SUSTAINABLE CHEMISTRY ENGINEERING, v.6, no.12, pp.16734 - 16743

ISSN
2168-0485
DOI
10.1021/acssuschemeng.8b04000
URI
http://hdl.handle.net/10203/318310
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0