Real-Time Photoacoustic Thermometry Combined With Clinical Ultrasound Imaging and High-Intensity Focused Ultrasound

Cited 47 time in webofscience Cited 0 time in scopus
  • Hit : 16
  • Download : 0
High-intensity focused ultrasound (HIFU) treatment is a promising non-invasive method for killing or destroying the diseased tissues by locally delivering thermal and mechanical energy without damaging surrounding normal tissues. In HIFU, measuring the temperature at the site of delivery is important for improving therapeutic efficacy, controlling safety, and appropriately planning a treatment. Several researchers have proposed photoacoustic thermometry for monitoring HIFU treatment, but they had many limitations, including the inability to image while the HIFU is on, inability to provide two-dimensional monitoring, and the inability to be used clinically. In this paper, we propose a novel integrated real-time photoacoustic thermometry system for HIFU treatment monitoring. The system provides ultrasound B-mode imaging, photoacoustic structural imaging, and photoacoustic thermometry during HIFU treatment in real-time for both in vitro and in vivo environments, without any interference from the strong therapeutic HIFU waves. We have successfully tested the real-time photoacoustic thermometry by investigating the relationship between the photoacoustic amplitude and the measured temperature with in vitro phantoms and in vivo tumor-bearing mice. The results show the feasibility of a real-time photoacoustic thermometry system for safe and effective monitoring of HIFU treatment.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2019-12
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.66, no.12, pp.3330 - 3338

ISSN
0018-9294
DOI
10.1109/TBME.2019.2904087
URI
http://hdl.handle.net/10203/318247
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 47 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0