Monolayer Kagome metals AV(3)Sb(5)

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 100
  • Download : 0
Recently, layered kagome metals AV(3)Sb(5) (A = K, Rb, and Cs) have emerged as a fertile platform for exploring frustrated geometry, correlations, and topology. Here, using first-principles and mean-field calculations, we demonstrate that AV(3)Sb(5) can crystallize in a mono-layered form, revealing a range of properties that render the system unique. Most importantly, the two-dimensional monolayer preserves intrinsically different symmetries from the three-dimensional layered bulk, enforced by stoichiometry. Consequently, the van Hove singularities, logarithmic divergences of the electronic density of states, are enriched, leading to a variety of competing instabilities such as doublets of charge density waves and s- and d-wave superconductivity. We show that the competition between orders can be fine-tuned in the monolayer via electron-filling of the van Hove singularities. Thus, our results suggest the monolayer kagome metal AV(3)Sb(5) as a promising platform for designer quantum phases. Much recent work has focused on the kagome metals AV(3)Sb(5) (A = K, Rb, and Cs), but studies of the monolayer form are only just beginning. Here, the authors theoretically study monolayer kagome metals, and predict modified van Hove singularities that lead to charge-density-wave doublets and d-wave superconductivity.
Publisher
NATURE PORTFOLIO
Issue Date
2023-02
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-36341-2
URI
http://hdl.handle.net/10203/306838
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0