A diagnosis of surface currents and sea surface heights in a coastal region

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 213
  • Download : 0
Upcoming satellite missions will observe the sea surface height (SSH) fields at a very high spatial resolution, which has generated an urgent need to better understand how well geostrophy can represent the ocean current field at finer scales, particularly in coastal regions characterized by complex flow geometry. We conduct statistical and spectral analyses of high-resolution surface currents and SSHs off the Oregon coast to examine the relative contribution of geostrophy and ageostrophy in coastal ocean currents. We analyze forward numerical simulations based primarily on a regional ocean model (ROMS) and use regional observations of high-frequency radar (HFR)-derived surface currents and altimeter-derived geostrophic currents and a subset of global domain numerical simulations (MITgcm) as secondary resources. Regional submesoscale ageostrophic currents account for up to 50% of the total variance and are primarily associated with near-inertial currents and internal tides. Geostrophy becomes dominant at time scales longer than 3 to 10 days and at spatial scales longer than 50 km, and is dependent on the depth and distance from the coast in the cross-shore direction. Ageostrophy dominates in the near-inertial and super-inertial frequency bands, which correspond to near-inertial motions (Coriolis force dominates) and high-frequency internal waves/tides (pressure gradient dominates), respectively. Because of ageostrophy, it may not be possible to estimate submesoscale currents from SSHs obtained from upcoming satellite missions using the geostrophic relationship. Thus, other concurrent high-resolution in-situ observations such as HFR-derived surface currents, together with data assimilation techniques, should be used for constructive data integration to resolve submesoscale currents.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-09
Language
English
Article Type
Article
Citation

CONTINENTAL SHELF RESEARCH, v.226, pp.104486

ISSN
0278-4343
DOI
10.1016/j.csr.2021.104486
URI
http://hdl.handle.net/10203/287129
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0