Multi-artery heat pipe spreader: Experiment

Cited 100 time in webofscience Cited 0 time in scopus
  • Hit : 78
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHwang, G. S.ko
dc.contributor.authorNam, Youngsukko
dc.contributor.authorFleming, E.ko
dc.contributor.authorDussinger, P.ko
dc.contributor.authorJu, Y. S.ko
dc.contributor.authorKaviany, M.ko
dc.date.accessioned2021-06-25T02:10:56Z-
dc.date.available2021-06-25T02:10:56Z-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.issued2010-06-
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.53, no.13-14, pp.2662 - 2669-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://hdl.handle.net/10203/286190-
dc.description.abstractWe constructed a low thermal resistance, multi-artery heat pipe spreader vapor chamber by designing a thin (monolayer) evaporator wick and distributed permeable columnar arteries supplying liquid (water) to highly concentrated heat source region. The condenser wick is layered copper screens in intimate contact with the columnar arteries. The vapor chamber is sealed and externally surface-convection cooled on the condenser side. For the evaporator wick and arteries, sintered, surface etched-oxidized copper particles are used to enhance wettability. The measured evaporator thermal resistance is less than 0.05 K/(W/cm(2))) using a 1 cm(2) heat source, and the critical heat flux is about 380 W/cm(2). This is in good agreement with thermal hydraulic network models prediction, 389 W/cm(2). The resistance is dominated by the small effective thermal conductivity of the evaporator wick and by the small conduction path through the receding meniscus within it. This resistance decreases nonlinearly with the heat flux, due to a decrease in the radius of the receding meniscus. (C) 2010 Published by Elsevier Ltd.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleMulti-artery heat pipe spreader: Experiment-
dc.typeArticle-
dc.identifier.wosid000277793100009-
dc.identifier.scopusid2-s2.0-77950057696-
dc.type.rimsART-
dc.citation.volume53-
dc.citation.issue13-14-
dc.citation.beginningpage2662-
dc.citation.endingpage2669-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2010.02.046-
dc.contributor.localauthorNam, Youngsuk-
dc.contributor.nonIdAuthorHwang, G. S.-
dc.contributor.nonIdAuthorFleming, E.-
dc.contributor.nonIdAuthorDussinger, P.-
dc.contributor.nonIdAuthorJu, Y. S.-
dc.contributor.nonIdAuthorKaviany, M.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMulti artery-
dc.subject.keywordAuthorHeat spreader-
dc.subject.keywordAuthorMeniscus recess-
dc.subject.keywordAuthorCapillary-
dc.subject.keywordAuthorWick-
dc.subject.keywordAuthorVapor chamber-
dc.subject.keywordAuthorHysteresis-
dc.subject.keywordPlusBIPOROUS WICKS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCOATINGS-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusVAPOR-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusFLUX-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 100 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0