Electric-field-driven octahedral rotation in perovskite

Cited 7 time in webofscience Cited 3 time in scopus
  • Hit : 234
  • Download : 128
DC FieldValueLanguage
dc.contributor.authorKyung, Wonshikko
dc.contributor.authorKim, Choong H.ko
dc.contributor.authorKim, Yeong Kwanko
dc.contributor.authorKim, Beomyoungko
dc.contributor.authorKim, Chulko
dc.contributor.authorJung, Woobinko
dc.contributor.authorKwon, Junyoungko
dc.contributor.authorKim, Minsooko
dc.contributor.authorBostwick, Aaronko
dc.contributor.authorDenlinger, Jonathan D.ko
dc.contributor.authorYoshida, Yoshiyukiko
dc.contributor.authorKim, Changyoungko
dc.date.accessioned2021-03-02T00:50:46Z-
dc.date.available2021-03-02T00:50:46Z-
dc.date.created2021-02-18-
dc.date.created2021-02-18-
dc.date.created2021-02-18-
dc.date.created2021-02-18-
dc.date.issued2021-01-
dc.identifier.citationNPJ QUANTUM MATERIALS, v.6, no.1, pp.5-
dc.identifier.issn2397-4648-
dc.identifier.urihttp://hdl.handle.net/10203/281080-
dc.description.abstractRotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by controlling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr2RuO4. Rotated octahedra in the surface layer of Sr2RuO4 are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr2RuO4 originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step toward in situ control of the physical properties of perovskite oxides.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleElectric-field-driven octahedral rotation in perovskite-
dc.typeArticle-
dc.identifier.wosid000610366900002-
dc.identifier.scopusid2-s2.0-85098954011-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue1-
dc.citation.beginningpage5-
dc.citation.publicationnameNPJ QUANTUM MATERIALS-
dc.identifier.doi10.1038/s41535-020-00306-1-
dc.contributor.localauthorKim, Yeong Kwan-
dc.contributor.nonIdAuthorKyung, Wonshik-
dc.contributor.nonIdAuthorKim, Choong H.-
dc.contributor.nonIdAuthorKim, Beomyoung-
dc.contributor.nonIdAuthorKim, Chul-
dc.contributor.nonIdAuthorJung, Woobin-
dc.contributor.nonIdAuthorKwon, Junyoung-
dc.contributor.nonIdAuthorKim, Minsoo-
dc.contributor.nonIdAuthorBostwick, Aaron-
dc.contributor.nonIdAuthorDenlinger, Jonathan D.-
dc.contributor.nonIdAuthorYoshida, Yoshiyuki-
dc.contributor.nonIdAuthorKim, Changyoung-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusFERROMAGNETISM-
dc.subject.keywordPlusWALLS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0