Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs

Cited 50 time in webofscience Cited 28 time in scopus
  • Hit : 758
  • Download : 0
Lipid droplet (LD) accumulation, a key feature of foam cells, constitutes an attractive target for therapeutic intervention in atherosclerosis. However, despite advances in cellular imaging techniques, current noninvasive and quantitative methods have limited application in living foam cells. Here, using optical diffraction tomography (ODT), we performed quantitative morphological and biophysical analysis of living foam cells in a label-free manner. We identified LDs in foam cells by verifying the specific refractive index using correlative imaging comprising ODT integrated with three-dimensional fluorescence imaging. Through time-lapse monitoring of three-dimensional dynamics of label-free living foam cells, we precisely and quantitatively evaluated the therapeutic effects of a nanodrug (mannose-polyethylene glycol-glycol chitosan-fluorescein isothiocyanate-lobeglitazone; MMR-Lobe) designed to affect the targeted delivery of lobeglitazone to foam cells based on high mannose receptor specificity. Furthermore, by exploiting machine-learning-based image analysis, we further demonstrated therapeutic evaluation at the single-cell level. These findings suggest that refractive index measurement is a promising tool to explore new drugs against LD-related metabolic diseases.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-02
Language
English
Article Type
Article
Citation

ACS NANO, v.14, no.2, pp.1856 - 1865

ISSN
1936-0851
DOI
10.1021/acsnano.9b07993
URI
http://hdl.handle.net/10203/273722
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 50 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0