Non-Gaussian quantum states of a multimode light field

Cited 90 time in webofscience Cited 64 time in scopus
  • Hit : 416
  • Download : 0
Advanced quantum technologies require scalable and controllable quantum resources(1,2). Gaussian states of multimode light, such as squeezed states and cluster states, are scalable quantum systems(3-5), which can be generated on demand. However, non-Gaussian features are indispensable in many quantum protocols, especially to reach a quantum computational advantage(6). Embodying non-Gaussianity in a multimode quantum state remains a challenge as non-Gaussian operations generally cannot maintain coherence among multiple modes. Here, we generate non-Gaussian quantum states of a multimode light field by removing a single photon in a mode-selective manner from a Gaussian state(7). To highlight the potential for continuous-variable quantum technologies, we first demonstrated the capability to generate negativity of the Wigner function in a controlled mode. Subsequently, we explored the interplay between non-Gaussianity and quantum entanglement and verify a theoretical prediction(8) about the propagation of non-Gaussianity along the nodes of photon-subtracted cluster states. Our results demonstrate large-scale non-Gaussianity with great flexibility along with an ensured compatibility with quantum information protocols. This range of features makes our approach ideal to explore the physics of non-Gaussian entanglement(9,10) and to develop quantum protocols, which range across quantum computing(11,12), entanglement distillation(13) and quantum simulations(14). Continuous-variables quantum information processing requires non-Gaussian states and operations. The generation of non-Gaussian quantum states of a multimode field is now reported through a mode-selective photon-subtraction scheme
Publisher
Nature Publishing Group
Issue Date
2020-02
Language
English
Article Type
Article
Citation

NATURE PHYSICS, v.16, no.2, pp.144 - +

ISSN
1745-2473
DOI
10.1038/s41567-019-0726-y
URI
http://hdl.handle.net/10203/272405
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 90 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0