Varying electronic coupling at graphene-copper interfaces probed with Raman spectroscopy

Cited 11 time in webofscience Cited 10 time in scopus
  • Hit : 555
  • Download : 0
As synthesis of graphene on copper became one of the primary preparation methods for both fundamental research and industrial application, Raman spectra of graphene/Cu systems need to be quantitatively understood regarding how their interactions affect the electronic structure of graphene. Using multi-wavelength Raman spectroscopy, we investigated three types of graphene bound on Cu: graphene grown on Cu foils and Cu film/SiO2, and Cu-evaporated exfoliated graphene. 2D peak frequencies of the first two samples were ~17 cm-1 higher than expected for 1.96 eV excitation even when the effect of strain was considered. More notably, the upshift in 2D decreased with increasing excitation energy. Based on control experiments using Cu-evaporated graphene, we revealed that the spectral anomaly was induced by environment-dependent nonlinear dispersion in the electronic bands of graphene and determined the degree of the electronic modification. We also showed that the large upshifts of G and 2D peaks originating from differential thermal expansion of Cu could be significantly reduced by backing Cu films with dielectric substrates of insignificant thermal expansion. The quantitative analysis of electronic coupling between graphene and Cu presented in this study will be highly useful in characterizing as-grown graphene and possibly in other forms.
Publisher
IOP PUBLISHING LTD
Issue Date
2020-04
Language
English
Article Type
Article
Citation

2D MATERIALS, v.7, no.2, pp.025006

ISSN
2053-1583
DOI
10.1088/2053-1583/ab60b4
URI
http://hdl.handle.net/10203/272001
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0