A power-balance model of the density limit in fusion plasmas: application to the L-mode tokamak

Cited 13 time in webofscience Cited 10 time in scopus
  • Hit : 130
  • Download : 0
A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald- like scaling, alpha I-p(8/9), for the RFP and the ohmic tokamak, a mixed scaling, alpha (PIp4/9)-I-4/9, for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, arc taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
Publisher
IOP PUBLISHING LTD
Issue Date
2019-12
Language
English
Article Type
Article
Citation

NUCLEAR FUSION, v.59, no.12, pp.126011

ISSN
0029-5515
DOI
10.1088/1741-4326/ab3b31
URI
http://hdl.handle.net/10203/271662
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0