Aminosilane-Modified CuGaO2 Nanoparticles Incorporated with CuSCN as a Hole-Transport Layer for Efficient and Stable Perovskite Solar Cells

Cited 41 time in webofscience Cited 28 time in scopus
  • Hit : 470
  • Download : 174
DC FieldValueLanguage
dc.contributor.authorLee, Byunghoko
dc.contributor.authorYun, Alan Jiwanko
dc.contributor.authorKim, Jinhyunko
dc.contributor.authorGil, Bumjinko
dc.contributor.authorShin, Byunghako
dc.contributor.authorPark, Byungwooko
dc.date.accessioned2019-12-20T06:21:39Z-
dc.date.available2019-12-20T06:21:39Z-
dc.date.created2019-10-07-
dc.date.created2019-10-07-
dc.date.created2019-10-07-
dc.date.issued2019-11-
dc.identifier.citationADVANCED MATERIALS INTERFACES, v.6, no.22, pp.1901372-
dc.identifier.issn2196-7350-
dc.identifier.urihttp://hdl.handle.net/10203/270031-
dc.description.abstractHerein, solution-processible inorganic hole-transport layer (HTL) of a perovskite solar cell that consists of CuGaO2 nanoparticles and CuSCN, which leads to an improved device performance as well as long-term stability, is reported. Uniform films of CuGaO2 are prepared by first treating CuGaO2 nanoparticles with aminosilane that leads to well-dispersed CuGaO2 solution, followed by spin-coating of the suspension. Subsequent spin-coating of CuSCN solution onto the CuGaO2 forms a smooth HTL with excellent coverage and electrical conductivity. Comparing to the reference device with CuSCN HTL, the CuGaO2/CuSCN device improves carrier extraction and reduces trap density by approximate to 40%, as measured by photoluminescence and capacitance analysis. Excellent thermal stability is also demonstrated: approximate to 80% of the initial efficiency of the perovskite solar cells with the CuGaO2/CuSCN HTL is retained after 400 h under 85 degrees C/85% relative humidity environment.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleAminosilane-Modified CuGaO2 Nanoparticles Incorporated with CuSCN as a Hole-Transport Layer for Efficient and Stable Perovskite Solar Cells-
dc.typeArticle-
dc.identifier.wosid000486916700001-
dc.identifier.scopusid2-s2.0-85073946905-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue22-
dc.citation.beginningpage1901372-
dc.citation.publicationnameADVANCED MATERIALS INTERFACES-
dc.identifier.doi10.1002/admi.201901372-
dc.contributor.localauthorShin, Byungha-
dc.contributor.nonIdAuthorLee, Byungho-
dc.contributor.nonIdAuthorYun, Alan Jiwan-
dc.contributor.nonIdAuthorKim, Jinhyun-
dc.contributor.nonIdAuthorGil, Bumjin-
dc.contributor.nonIdAuthorPark, Byungwoo-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCuGaO2-
dc.subject.keywordAuthorCuSCN-
dc.subject.keywordAuthorlong-term stability-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusSPIRO-OMETAD-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusCOST-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusDEGRADATION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 41 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0