Blind Deblurring of Text Images Using a Text-Specific Hybrid Dictionary

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 136
  • Download : 0
In this paper, we propose a blind text image deblurring algorithm by using a text-specific hybrid dictionary. After careful analysis, we find that the text-specific hybrid dictionary has the great ability of providing powerful contextual information for text image deblurring. Here, it is worth noting that our proposed method is inspired by our observation that an intermediate latent image contains not only sharp regions, but also multiple types of small blurred regions. Based upon our discovery, we propose a prior for text images based on sparse representation, which models the relationship between an intermediate latent image and a desired sharp image. To this end, we carefully collect three different image patch pairs, which are 1) Gaussian blur-sharp, 2) motion blur-sharp, and 3) sharp-sharp, in order to construct the text-specific hybrid dictionary. We also propose a new optimization framework suitable for the task of text image deblurring in this paper. Extensive experiments have been conducted on a challenging dataset of synthetic and real-world text images. Our results demonstrate that the proposed method outperforms the state-of-the-art image deblurring methods both quantitatively and qualitatively.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-12
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON IMAGE PROCESSING, v.29, no.1, pp.710 - 723

ISSN
1057-7149
DOI
10.1109/TIP.2019.2933739
URI
http://hdl.handle.net/10203/268740
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0