MOAD: Modeling Observation-based Approximate Dependency

Cited 5 time in webofscience Cited 4 time in scopus
  • Hit : 216
  • Download : 0
While dependency analysis is foundational to many applications of program analysis, the static nature of many existing techniques presents challenges such as limited scalability and inability to cope with multi-lingual systems. We present a novel dependency analysis technique that aims to approximate program dependency from a relatively small number of perturbed executions. Our technique, called MOAD (Modeling Observation-based Approximate Dependency), reformulates program dependency as the likelihood that one program element is dependent on another, instead of a more classical Boolean relationship. MOAD generates a set of program variants by deleting parts of the source code, and executes them while observing the impacts of the deletions on various program points. From these observations, MOAD infers a model of program dependency that captures the dependency relationship between the modification and observation points. While MOAD is a purely dynamic dependency analysis technique similar to Observation Based Slicing (ORBS), it does not require iterative deletions. Rather, MOAD makes a much smaller number of multiple, independent observations in parallel and infers dependency relationships for multiple program elements simultaneously, significantly reducing the cost of dynamic dependency analysis. We evaluate MOAD by instantiating program slices from the obtained probabilistic dependency model. Compared to ORBS, MOAD's model construction requires only 18.7% of the observations used by ORBS, while its slices are only 16% larger than the corresponding ORBS slice, on average.
Publisher
IEEE Computer Society
Issue Date
2019-09-30
Language
English
Citation

IEEE International Conference on Source Code Analysis and Manipulation, pp.12 - 22

DOI
10.1109/SCAM.2019.00011
URI
http://hdl.handle.net/10203/268573
Appears in Collection
CS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0