A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 32
  • Download : 0
Background Extracellular vesicles (EVs) play important roles in intercellular communication by delivering RNA, lipid, and proteins to neighboring or distant cells. Identification and classification of EVs secreted from diverse cell types are essential for understanding their signaling properties. Methods In this study, EVs from the culture media were isolated by ultracentrifugation and analyzed by electron microscopy (EM) and nanoparticle tracking analyses. Conditioned media (CM) from HEK293 cells culture grown either in serum-free (SF) or 10% fetal bovine serum (FBS) containing media were centrifuged at 100,000xg to separate the SN Delta supernatant and the P100 pellet in which exosomes are enriched. Then, the SN Delta fraction was centrifuged at 200,000xg to yield the P200 pellet fraction containing novel EVs smaller than exosomes. The exosomal markers in the EV subgroups were examined by western blotting and immune-EM, and the functional analyses of EVs were conducted on HEK293 and THP-1 cell culture. Results We identified a new group of EVs in the P200 fraction that was smaller than exosomes in size. Typical exosome markers such as Hsp70, TSG101, and CD63 were found in both P100 exosomes and the P200 vesicles, but CD81 was highly enriched in exosomes but not in the P200 vesicles. Furthermore, chemicals that inhibit the major exosome production pathway did not decrease the level of P200 vesicles. Therefore, these small EVs indeed belong to a distinguished group of EVs. Exosomes and the P200 vesicles were found in CM of human cell lines as well as FBS. Addition of the exosomes and the P200 vesicles to human cell cultures enhanced exosome production and cell proliferation, respectively. Conclusions Our study identifies a novel population of EVs present in the P200 fraction. This EV population is distinguished from exosomes in size, protein contents, and biogenesis pathway. Furthermore, exosomes promote their own production whereas the P200 vesicles support cell proliferation. In sum, we report a new group of EVs that are distinct physically, biologically and functionally from exosomes.
Publisher
BMC
Issue Date
2019-08
Language
English
Article Type
Article
Citation

CELL COMMUNICATION AND SIGNALING, v.17, no.1

ISSN
1478-811X
DOI
10.1186/s12964-019-0401-z
URI
http://hdl.handle.net/10203/267444
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0