Effect of Annealing Temperature on the Interfacial Interaction of LiNi0.5Mn1.5O4 Thin Film Cathode with Stainless-Steel Substrate

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 51
  • Download : 0
LiNi0.5Mn1.5O4 thin films were coated on stainless steel substrates by radio-frequency sputtering at room temperature for a lithium-ion battery. The cathode films were post-annealed at 500, 600 and 700 °C to study (i) the impact of annealing temperature on the crystallization of the cathode film and (ii) the reactivity between the cathode film and the stainless steel substrate. X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy were adopted to characterize the thin films. The electrochemical properties of the LiNi0.5Mn1.5O4 cathodes were investigated with cyclic voltammetry and galvanostatic charge/discharge tests. As the annealing temperature increased from 500 to 600 °C, the crystallinity and electrochemical characteristics of LiNi0.5Mn1.5O4 both improved. However, as the annealing temperature further increased to 700 °C, the phase purity and the electrochemical performance were greatly deteriorated. Combined chemical analyses with time-of-flight secondary ion mass spectrometry depth profiling and energy-dispersive X-ray spectroscopy in scanning transmission electron microscopy mapping have indicated that the cross-diffusion of metal ions between LiNi0.5Mn1.5O4 and the stainless steel substrate takes place at a temperature higher than 600 °C, which was attributed as a main origin of the phase change in the LiNi0.5Mn1.5O4 cathode layer and electrochemistry degradations of lithium-ion battery.
Publisher
SPRINGER
Issue Date
2019-06
Language
English
Article Type
Article
Citation

JOURNAL OF ELECTROCERAMICS, v.42, no.3-4, pp.104 - 112

ISSN
1385-3449
DOI
10.1007/s10832-018-0168-4
URI
http://hdl.handle.net/10203/263942
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0