Comparison of Multi-Sensor Fusion Methods for Maritime Target Object Tracking 해상 장애물 추적을 위한 다중센서 융합 방법에 따른 성능비교

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 32
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, Jungwookko
dc.contributor.authorCho, Yonghoonko
dc.contributor.authorKim, Jinwhanko
dc.contributor.authorLee, Philyeobko
dc.date.accessioned2019-07-08T07:10:03Z-
dc.date.available2019-07-08T07:10:03Z-
dc.date.created2019-07-08-
dc.date.created2019-07-08-
dc.date.created2019-07-08-
dc.date.issued2019-06-
dc.identifier.citationJournal of Institute of Control, Robotics and Systems, v.25, no.6, pp.551 - 556-
dc.identifier.issn1976-5622-
dc.identifier.urihttp://hdl.handle.net/10203/263091-
dc.description.abstractAutomatic target tracking of surrounding surface vessels is important to safely operate a maritime autonomous surface ship (MASS). To accurately and reliably estimate the target state in marine environments, designers have fused various navigation sensors, including radar, lidar, and cameras. This study compares how well several sensor fusion methods perform for target motion analysis (TMA) tracking. Although the ideal approach is to combine all of the sensor outputs into a single integrated fusion-based tracking filter, this approach is not always preferred in practice due to difficulties in tuning filter parameters, challenges of data association between different sensors, and a large computational effort that cannot be easily distributed. In this paper, we focus on track fusion approaches that combine tracking results from a local tracking filter using individual sensor observations. We compare the sensor fusion methods using a Monte-Carlo simulation and discuss the results.-
dc.languageKorean-
dc.publisherInstitute of Control, Robotics and Systems-
dc.titleComparison of Multi-Sensor Fusion Methods for Maritime Target Object Tracking-
dc.title.alternative해상 장애물 추적을 위한 다중센서 융합 방법에 따른 성능비교-
dc.typeArticle-
dc.identifier.scopusid2-s2.0-85069683260-
dc.type.rimsART-
dc.citation.volume25-
dc.citation.issue6-
dc.citation.beginningpage551-
dc.citation.endingpage556-
dc.citation.publicationnameJournal of Institute of Control, Robotics and Systems-
dc.identifier.doi10.5302/J.ICROS.2019.19.0055-
dc.identifier.kciidART002471421-
dc.contributor.localauthorKim, Jinwhan-
dc.contributor.nonIdAuthorLee, Philyeob-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0