A simple model for the quench front propagation in a highly superheated particle bed

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 531
  • Download : 0
In this paper, a simple and fast-running model for the quenching of a particulate bed is suggested assuming two-step quenching: downward quench front propagation step and upward quench front propagation step. Most of the existing models are based on the assumption that the quenching rate is only hydraulically limited. However, the model suggested in this paper assumes that the quenching rate can be also thermally limited by the large thermal energy of a particulate bed in addition to the hydraulic limit of quenching. It turns out that the suggested model well predicted the decreasing trend of heat flux with increasing bed temperature. Also, it was found out that the effect of particle size on the heat removal during the quenching can be smaller than one expected from the flooding-limit based model. RMSE of the current model was 15% in comparison with 38% of Ginsberg's model. (C) 2019 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-06
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.136, pp.644 - 654

ISSN
0017-9310
DOI
10.1016/j.ijheatmasstransfer.2019.03.033
URI
http://hdl.handle.net/10203/262238
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0