Energy Recycling Telemetry IC With Simultaneous 11.5 mW Power and 6.78 Mb/s Backward Data Delivery Over a Single 13.56 MHz Inductive Link

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 70
  • Download : 0
We present a telemetry IC with a new data modulation scheme for efficient simultaneous transfer of power and backward data over a single inductive link. Data-driven synchronized single-cycle shorting of the secondary LC tank conserves reactive energy while inducing an instantaneous voltage change on the primary side. Contrary to conventional load shift keying modulation, the recovery time of the secondary LC oscillation after shorting improves asymptotically with increasing quality factor of the secondary LC tank. Since quality factor does not reduce the data rate, the LC tank can be simultaneously optimized for power and data telemetry, obviating the conventional tradeoff between power transfer efficiency and data rate. Cyclic ON-OFF keying time-encoded symbol data mapping of the shorting cycle allows transmission of two data bits per four carrier cycles while supporting simultaneous power delivery during at least six nonshorting out of eight half cycles. All timing control signals for rectification and data transmission are generated from a low-power clock recovery comparator and a phased-locked loop. The 0.92 mm(2) 65 nm CMOS IC delivers up to 11.5 mW power to the load and simultaneously transmits 6.78 Mb/s data while dissipating 64 mu W power. A bit error rate of <= 9.9 x 10(-8) was measured over a single 1 cm 13.56 MHz inductive link at a data rate of 6.78 Mb/s with a 10 mW load power.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2016-11
Language
English
Article Type
Article
Citation

IEEE JOURNAL OF SOLID-STATE CIRCUITS, v.51, no.11, pp.2664 - 2678

ISSN
0018-9200
DOI
10.1109/JSSC.2016.2600864
URI
http://hdl.handle.net/10203/251906
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0