Silicon-Integrated High-Density Electrocortical Interfaces

Cited 61 time in webofscience Cited 47 time in scopus
  • Hit : 424
  • Download : 0
Recent demand and initiatives in brain research have driven significant interest toward developing chronically implantable neural interface systems with high spatiotemporal resolution and spatial coverage extending to the whole brain. Electroencephalography-based systems are noninvasive and cost efficient in monitoring neural activity across the brain, but suffer from fundamental limitations in spatiotemporal resolution. On the other hand, neural spike and local field potential (LFP) monitoring with penetrating electrodes offer higher resolution, but are highly invasive and inadequate for long-term use in humans due to unreliability in long-term data recording and risk for infection and inflammation. Alternatively, electrocorticography (ECoG) promises a minimally invasive, chronically implantable neural interface with resolution and spatial coverage capabilities that, with future technology scaling, may meet the needs of recently proposed brain initiatives. In this paper, we discuss the challenges and state-of-the-art technologies that are enabling next-generation fully implantable high-density ECoG interfaces, including details on electrodes, data acquisition front-ends, stimulation drivers, and circuits and antennas for wireless communications and power delivery. Along with state-of-the-art implantable ECoG interface systems, we introduce a modular ECoG system concept based on a fully encapsulated neural interfacing acquisition chip (ENIAC). Multiple ENIACs can be placed across the cortical surface, enabling dense coverage over wide area with high spatiotemporal resolution. The circuit and system level details of ENIAC are presented, along with measurement results.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2017-01
Language
English
Article Type
Article
Citation

PROCEEDINGS OF THE IEEE, v.105, no.1, pp.11 - 33

ISSN
0018-9219
DOI
10.1109/JPROC.2016.2587690
URI
http://hdl.handle.net/10203/251904
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0