Zigzag-Shaped Silver Nanoplates: Synthesis via Ostwald Ripening and Their Application in Highly Sensitive Strain Sensors

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 97
  • Download : 0
Zigzag-shaped Ag nanoplates display unique anisotropic planar structures with unusual jagged edges and relatively large lateral dimensions. These characteristics make such nanoplates promising candidates for metal inks in printed electronics, which can be used for realizing stretchable electrodes. In the current work, we used a one-pot coordination-based synthetic strategy to synthesize zigzag-shaped Ag nanoplates. In the synthetic procedure, cyanuric acid was used both as a ligand of the Ag+ ion, hence producing complex structures and controlling the kinetics of the reduction of the cation, and as a capping agent that promoted the lateral growth of the Ag nanoplates. Hence, cyanuric acid played a crucial role in the formation of zigzag-shaped nanoplates. In contrast to previous studies that reported oriented attachment to be the predominant mechanism responsible for the growth of zigzag-shaped nanoplates, Ostwald ripening was the dominant growth mechanism in the current work. Our findings on the particle morphology and crystalline structure of the Ag nanoplates motivated us to use them as conductive materials for stretchable strain sensors. Strain sensors based on nanocomposites of our zigzag-shaped Ag nanoplate and polydimethylsiloxane in the form of a sandwich structure were successfully produced by following a simple, low-cost, and solution-processable method. The strain sensors exhibited extremely high sensitivity (gauge factor approximate to 2000), high stretchability with a linear response (approximate to 27%), and high reliability, all of which allowed the sensor to monitor diverse human motions, including joint movement and phonation.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-10
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS INTERFACES, v.10, no.45, pp.39134 - 39143

ISSN
1944-8244
DOI
10.1021/acsami.8b11322
URI
http://hdl.handle.net/10203/248305
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0