Tuning Resistive Switching Characteristics of Tantalum Oxide Memristors through Si Doping

Cited 111 time in webofscience Cited 0 time in scopus
  • Hit : 369
  • Download : 0
An oxide memristor device changes its internal state according to the history of the applied voltage and current. The principle of resistive switching (RS) is based on ion transport (e.g., oxygen vacancy redistribution). To date, devices with bi-, triple-, or even quadruple-layered structures have been studied to achieve the desired switching behavior through device structure optimization. In contrast, the device performance can also be tuned through fundamental atomic-level design of the switching materials, which can directly affect the dynamic transport of ions and lead to optimized switching characteristics. Here, we show that doping tantalum oxide memristors with silicon atoms can facilitate oxygen vacancy formation and transport in the switching layer with adjustable ion hopping distance and drift velocity. The devices show larger dynamic ranges with easier access to the intermediate states while maintaining the extremely high cycling endurance (>10(10) set and reset) and are well-suited for neuromorphic computing applications. As an example, we demonstrate different flavors of spike-timing-dependent plasticity in this memristor system. We further provide a characterization methodology to quantitatively estimate the effective hopping distance of the oxygen vacancies. The experimental results are confirmed through detailed ab initio calculations which reveal the roles of dopants and provide design methodology for further optimization of the RS behavior.
Publisher
AMER CHEMICAL SOC
Issue Date
2014-10
Language
English
Article Type
Article
Citation

ACS NANO, v.8, no.10, pp.10262 - 10269

ISSN
1936-0851
DOI
10.1021/nn503464q
URI
http://hdl.handle.net/10203/247681
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 111 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0