SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

Cited 490 time in webofscience Cited 0 time in scopus
  • Hit : 401
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Shinhyunko
dc.contributor.authorTan, Scott H.ko
dc.contributor.authorLi, Zefanko
dc.contributor.authorKim, Yunjoko
dc.contributor.authorChoi, Chanyeolko
dc.contributor.authorChen, Pai-Yuko
dc.contributor.authorYeon, Hanwoolko
dc.contributor.authorYu, Shimengko
dc.contributor.authorKim, Jeehwanko
dc.date.accessioned2018-12-20T05:13:03Z-
dc.date.available2018-12-20T05:13:03Z-
dc.date.created2018-12-03-
dc.date.created2018-12-03-
dc.date.issued2018-04-
dc.identifier.citationNATURE MATERIALS, v.17, no.4, pp.335 - +-
dc.identifier.issn1476-1122-
dc.identifier.urihttp://hdl.handle.net/10203/247667-
dc.description.abstractAlthough several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on-formation of filaments in an amorphous medium-is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleSiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations-
dc.typeArticle-
dc.identifier.wosid000428373200015-
dc.identifier.scopusid2-s2.0-85040791877-
dc.type.rimsART-
dc.citation.volume17-
dc.citation.issue4-
dc.citation.beginningpage335-
dc.citation.endingpage+-
dc.citation.publicationnameNATURE MATERIALS-
dc.identifier.doi10.1038/s41563-017-0001-5-
dc.contributor.localauthorChoi, Shinhyun-
dc.contributor.nonIdAuthorTan, Scott H.-
dc.contributor.nonIdAuthorLi, Zefan-
dc.contributor.nonIdAuthorKim, Yunjo-
dc.contributor.nonIdAuthorChoi, Chanyeol-
dc.contributor.nonIdAuthorChen, Pai-Yu-
dc.contributor.nonIdAuthorYeon, Hanwool-
dc.contributor.nonIdAuthorYu, Shimeng-
dc.contributor.nonIdAuthorKim, Jeehwan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusSWITCHING CHARACTERISTICS-
dc.subject.keywordPlusMEMRISTIVE DEVICES-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusLAYERS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 490 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0