A rational method to kinetically control the rate-determining step to explore efficient electrocatalysts for the oxygen evolution reaction

Cited 63 time in webofscience Cited 0 time in scopus
  • Hit : 635
  • Download : 590
A novel, rational, and efficient way to explore high-performance electrocatalysts was developed by controlling the reaction kinetics of the rate-determining step (RDS). Density functional theory (DFT) calculations demonstrate that the RDS for the oxygen evolution reaction driven by transition metal hydroxides/oxides, i.e., surface adsorption of (OH-/OOH center dot) species, can be significantly promoted by increasing the electrophilicity of electrocatalysts via hybridization with electron-withdrawing inorganic nanosheets. As predicted by DFT calculation, the hybridization of Ni-Fe-layered double hydroxide (LDH)/Ni-Co-LDH, with RuO2 nanosheets (1.0 wt%) leads to significant lowering of the overpotentials to 207/276 mV at 10 mA cm(-2), i.e., one of the smallest overpotentials for LDH-based materials, with the increase in the current density. The necessity of a very small amount of RuO2 nanosheets (1.0 wt%) to optimize the electrocatalyst activity highlights the remarkably high efficiency of the RuO2 addition. The present study underscores the importance of kinetic control of the RDS via hybridization with electron-withdrawing species for exploring novel efficient electrocatalysts.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2018-07
Language
English
Article Type
Article
Citation

NPG ASIA MATERIALS, v.10, pp.659 - 669

ISSN
1884-4049
DOI
10.1038/s41427-018-0060-3
URI
http://hdl.handle.net/10203/245583
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
105963.pdf(1.68 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 63 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0