Reinvestigation of the rotation effect in solid He-4 with a rigid torsional oscillator

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 579
  • Download : 0
We reexamined the rotation-induced effect observed in solid He-4 by using a rigid two-frequency torsional oscillator (TO). The previous rotation experiments reported the rotation-induced suppression of the "nonclassical" TO response that was interpreted as evidence of irrotational bulk superfluidity in solid He-4. However, the experiment employed a nonrigid TO that could amplify the elastic contribution in the TO response. Thus, it is important to clarify if the rotation-induced suppression of the TO response could be attributed to an unavoidable elastic effect. In our rigid TO, complicated nonlinear viscoelastic contributions are systematically eliminated. In addition, the TO operating at two different resonant frequencies allows us to decompose a possible superfluidlike frequency-independent contribution on period drop from that of the linear elastic overshoot effect. We found no substantial rotation-induced effect in the out-of-phase resonant mode unlike that found in the previous rotation experiments. It indicates that the previous rotation effect in the nonrigid TO cannot be attributed to the genuine supersolidity. According to the frequency analysis of the TO response, the frequency-dependent period drop, which can be attributed to the elastic overshoot effect, remains unaffected upon application of dc rotation. However, the frequency-independent superfluidlike contribution exhibits a strikingly different rotation effect that is currently inexplicable.
Publisher
AMER PHYSICAL SOC
Issue Date
2018-07
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW B, v.98, no.1, pp.014509

ISSN
2469-9950
DOI
10.1103/PhysRevB.98.014509
URI
http://hdl.handle.net/10203/244857
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0