Enhanced reasoning with multilevel flow modeling based on time-to-detect and time-to-effect concepts

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 98
  • Download : 23
To easily understand and systematically express the behaviors of the industrial systems, various system modeling techniques have been developed. Particularly, the importance of system modeling has been greatly emphasized in recent years since modern industrial systems have become larger and more complex. Multilevel flow modeling (MFM) is one of the qualitative modeling techniques, applied for the representation and reasoning of target system characteristics and phenomena. MFM can be applied to industrial systems without additional domain-specific assumptions or detailed knowledge, and qualitative reasoning regarding event causes and consequences can be conducted with high speed and fidelity. However, current MFM techniques have a limitation, i.e., the dynamic features of a target system are not considered because time-related concepts are not involved. The applicability of MFM has been restricted since time-related information is essential for the modeling of dynamic systems. Specifically, the results from the reasoning processes include relatively less information because they did not utilize time-related data. In this article, the concepts of time-to-detect and time-to-effect were adopted from the system failure model to incorporate time-related issues into MFM, and a methodology for enhancing MFM-based reasoning with time-series data was suggested. (C) 2018 Korean Nuclear Society, Published by Elsevier Korea LLC.
Publisher
KOREAN NUCLEAR SOC
Issue Date
2018-05
Language
English
Article Type
Article; Proceedings Paper
Citation

NUCLEAR ENGINEERING AND TECHNOLOGY, v.50, no.4, pp.553 - 561

ISSN
1738-5733
DOI
10.1016/j.net.2018.03.008
URI
http://hdl.handle.net/10203/242456
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
104669.pdf(1.77 MB)Download

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0