Reliability and applicability of magnetic-force linear response theory: Numerical parameters, predictability, and orbital resolution

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 441
  • Download : 0
We investigated the reliability and applicability of so-calledmagnetic-force linear responsemethods to calculate spin-spin interaction strengths from first principles. We examined the dependence on the numerical parameters, including the number of basis orbitals and their cutoff radii within nonorthogonal LCPAO (linear combination of pseudoatomic orbitals) formalism. It is shown that the parameter dependence and the ambiguity caused by these choices are small enough in comparison to the other computation approach and experiments. Furthermore, we tried to pursue the broader applicability of this technique. We showed that magnetic-force theory can provide a reasonable prediction, especially for the case of strongly localized moments, even when the ground-state configuration is unknown or the total-energy value is not accessible. The formalism is extended for LCPAO to carry the orbital resolution from which the matrix form of the magnetic coupling constant is calculated. From the applications to Fe-based superconductors including LaFeAsO, NaFeAs, BaFe2As2, and FeTe, the distinctive characteristics of orbital-resolved interactions are clearly noticed in between single-stripe pnictides and double-stripe chalcogenides.
Publisher
AMER PHYSICAL SOC
Issue Date
2018-03
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW B, v.97, no.12, pp.125132

ISSN
2469-9950
DOI
10.1103/PhysRevB.97.125132
URI
http://hdl.handle.net/10203/241438
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0