Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Light-Emitting Diodes

Cited 66 time in webofscience Cited 0 time in scopus
  • Hit : 398
  • Download : 0
Graphene produced by chemical vapor deposition (CVD) has attracted great interest as a transparent conducting material, due to its extraordinary characteristics such as flexibility, optical transparency, and high conductivity, especially in next-generation displays. Graphene-based novel electrodes have the potential to satisfy the important factors for high-performance flexible organic light-emitting diodes (OLEDs) in terms of sheet resistance, transmittance, work function, and surface roughness. In this study, flexible and transparent graphene electrode architecture is proposed by adopting a selective defect healing technique for CVD-grown graphene, which results in several benefits that produce high-performance devices with excellent stabilities. The proposed architecture, which has a multi-layer graphene structure treated by a layer-by-layer healing process, exhibits significant improvement in sheet resistance with high optical transparency. For improving the charge transport property and mechanical robustness, various defect sites of the CVD-grown graphene are successfully decorated with gold nanoparticles through a simple electroplating (EP) method. Further, a graphene-based OLED device that integrates the proposed electrode architecture on flexible substrates is demonstrated. Therefore, this architecture provides a new strategy to fabricate graphene electrode in OLEDs, extending graphene's immense potential as an advanced conductor toward high-performance, flexible, and transparent displays.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2018-03
Language
English
Article Type
Article
Citation

ADVANCED FUNCTIONAL MATERIALS, v.28, no.10

ISSN
1616-301X
DOI
10.1002/adfm.201704435
URI
http://hdl.handle.net/10203/241103
Appears in Collection
ME-Journal Papers(저널논문)EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 66 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0