Enhanced transconductance in a double-gate graphene field-effect transistor

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 299
  • Download : 0
Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 mu S/mu m, that of the DG GFET was 25.7 mu S/mu m, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2018-03
Language
English
Article Type
Article
Citation

SOLID-STATE ELECTRONICS, v.141, pp.65 - 68

ISSN
0038-1101
DOI
10.1016/j.sse.2017.12.008
URI
http://hdl.handle.net/10203/240711
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0